{"title":"Prognostic and Immunologic Significance of SH2B2 in Colon Adenocarcinoma and its Relationship to Proliferation, Migration, and Invasion.","authors":"Nan Bai, Minyan Liu, Qinghuai Li","doi":"10.2174/0113862073346075241118092413","DOIUrl":"https://doi.org/10.2174/0113862073346075241118092413","url":null,"abstract":"<p><strong>Background: </strong>SH2B adaptor protein 2 (SH2B2, also named APS) is an adaptor protein implicated in the modulation of insulin signaling pathways and glucose metabolism. Its role in colon adenocarcinoma (COAD) is unknown.</p><p><strong>Methods: </strong>Data from The Cancer Genome Atlas and Gene Expression Omnibus database were utilized to assess SH2B2 expression and its clinical significance in COAD. We investigated the associations between SH2B2 expression with genomic instability, tumor mutational burden (TMB), DNA methylation, alternative splicing, immune infiltration, and drug sensitivity. A SH2B2 knockdown model was developed to examine its impact on COAD cellular functions.</p><p><strong>Results: </strong>Highly expressed SH2B2 is associated with a poorer prognosis in COAD. SH2B2 expression in COAD is associated with copy number variations, microsatellite instability, methylation patterns, and alternative 5' splicing events, but not with TMB. SH2B2 is positively correlated with mostly immune cells and the expression of PD-1 and CTLA4. The IC50 values of ten drugs were significantly correlated with SH2B2 expression. BI-2536_1086 had a strong binding affinity with SH2B2. Furthermore, the knockdown of SH2B2 reduced the proliferation, migration, and invasion of COAD cells.</p><p><strong>Conclusion: </strong>SH2B2 appears to act as an oncogene in COAD and may serve as a pivotal prognostic and therapeutic target, deserving further exploration.</p>","PeriodicalId":10491,"journal":{"name":"Combinatorial chemistry & high throughput screening","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142853167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nan Zhao, Menghai Wu, Periyannan Velu, Vijayalakshmi Annamalai, Jianbin Zhang
{"title":"Sanggenol L Alleviates Rotenone-induced Parkinson's Disease and Inhibits Mitochondrial Complex I by Apoptosis Via P13K/AKT/mTOR Signalling.","authors":"Nan Zhao, Menghai Wu, Periyannan Velu, Vijayalakshmi Annamalai, Jianbin Zhang","doi":"10.2174/0113862073358649241128053921","DOIUrl":"https://doi.org/10.2174/0113862073358649241128053921","url":null,"abstract":"<p><strong>Background: </strong>Parkinson's disease (PD) is the age-associated, second most advanced neurodegenerative illness. Rotenone is an extensively used pesticide to study PD pathology and inhibits mitochondrial complex I. Reports indicate that rotenone exerts neurotoxicity by its capability to produce reactive oxygen species (ROS), which eventually leads to neuronal apoptosis.</p><p><strong>Objective: </strong>Sanggenol L (SL) is an eminent flavonoid present in the Morus alba root bark, which exhibits neuroprotective, anticancer, and antioxidant properties.</p><p><strong>Materials and methods: </strong>Hence, we assessed the neuroprotective activity of SL (5 and 10 μM/ml) on rotenone-stimulated SK-NSH neuroblastoma cells and elucidated the effect of the P13K/AKT/mTOR signalling.</p><p><strong>Results: </strong>The anti-PD action of SL on proliferation, oxidative stress (OS), intracellular ROS, apoptosis, Bax, cleaved Caspase-12, -9, -3, and Cyt-c, Bcl-2 and P13K/AKT/mTOR signaling was determined by MTT assay, biochemical analysis, DCFDA, AO/EB staining and western blot. It was found that SL (5 and 10 μM/ml) reduced rotenone-triggered OS, ROS levels, and apoptosis in a concentration-related way. SL alleviates Bax, cleaved caspase-12, -9, -3, and Cytc, while reducing Bcl-2. Furthermore, SL safer mitochondria by increase MMP and suppresses phosphorylation of P13k/AKT/mTOR pathway, thereby regulating apoptotic signalling.</p><p><strong>Conclusion: </strong>Our findings indicate that SL showed protective effects against rotenone-induced OS, mitochondrial complex-I in neuronal cell damage, which suggests that SL might potentially serve as an anti-PD remedial candidate for PD treatment.</p>","PeriodicalId":10491,"journal":{"name":"Combinatorial chemistry & high throughput screening","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142827613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bushen Zhuyun Decoction Enhances Endometrial Receptivity via the IL-6/STAT3 Signaling Pathway in Rats.","authors":"Yinyin Ding, Yanli Hong, Yeting Zou, Xiaolan Wang, Xinyuan Liu, Xiaoyue Jiang, Minghui Hu, Jinjun Shan, Bei Liu, Huifang Zhou","doi":"10.2174/0113862073351630241128182125","DOIUrl":"https://doi.org/10.2174/0113862073351630241128182125","url":null,"abstract":"<p><strong>Background: </strong>Reproductive endocrine disorder can impair endometrial receptivity, preventing embryo implantation and increasing miscarriage risk. Impaired endometrial receptivity contributes significantly to female infertility. Inflammatory signaling pathways including the IL-6/STAT3 pathway help embryos implant. Therefore, it is crucial to explore the relationship between the IL-6/STAT3 signaling pathway and endometrial receptivity.</p><p><strong>Objective: </strong>To investigate the mechanism by which Bushen Zhuyun decoction (BSZY) enhances endometrial receptivity in rats through the IL-6/STAT3 signaling pathway.</p><p><strong>Methods: </strong>Mifepristone-induced poor endometrial receptivity models of female SD rats were established, followed by histopathological observation. ELISA was used to measure serum sex hormones and VEGF. Western blotting or IHC was used to measure steroid receptors, IGFBP1, and IL-6/STAT3 pathway activation in the uterus during each estrus cycle and early gestation of normal rats. The Treg/Th17 balance was assessed using flow cytometry.</p><p><strong>Results: </strong>Significant differences were found in the protein expressions of steroid receptors, IL6, STAT3, and p-STAT3 during each estrus cycle and early gestation of normal rats. The protein expressions of STAT3 and PR were strongly correlated with each other. BSZY notably improved uterine morphology increased the expression of implantation markers and raised the serum concentrations of sex hormones and VEGF. BSZY enhanced the expressions of IL-6 and its receptors and restored the expressions of STAT3 and p-STAT3 in the uterus of pregnant rats. In addition, BSZY effectively restored the Treg/Th17 balance in the peripheral blood of pregnant rats.</p><p><strong>Conclusion: </strong>BSZY enhances endometrial receptivity and promotes decidualization in SD rats via the IL-6/STAT3 signaling pathway.</p>","PeriodicalId":10491,"journal":{"name":"Combinatorial chemistry & high throughput screening","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142766190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mechanisms Underlying the Therapeutic Effects of Yiqi Wenyang Huwei Decoction in Treating Asthma Based on GEO Datasets, Network Pharmacology, Experimental Validation, and Molecular Docking.","authors":"Shuangdi Xiang, Yujiao Lu, Linhui Cheng, Hanrong Xue","doi":"10.2174/0113862073293081240606111739","DOIUrl":"10.2174/0113862073293081240606111739","url":null,"abstract":"<p><strong>Purpose: </strong>The Yiqi Wenyang Huwei Decoction (YWHD) is an herbal formula frequently utilized to treat asthma. Despite its wide usage, the specific mechanism of action remains unknown. Through an in-depth investigation utilizing network pharmacology, molecular docking techniques, and experimental validation, this study aims to uncover the molecular mechanism and material basis of YWHD in the treatment of asthma.</p><p><strong>Methods: </strong>The compounds and targets of YWHD were gathered from various databases such as TCMSP, PubMed, and CNKI. Additionally, asthma-related targets were obtained by combining the GEO dataset with GeneCards and OMIM databases. The STRING platform was employed to establish protein-protein interactions. GO and KEGG pathway enrichment analyses were conducted using DAVID. Molecular docking was utilized to assess the binding affinity between potential targets and active compounds. The asthma rat model was established through OVA induction, and a lung function meter was used to detect Mch-induced Max Rrs. HE staining was conducted to observe pathological changes, while ELISA was used to detect levels of inflammatory factors IL4, IL6, IL13, and IgE in BLAF. Furthermore, qPCR was used to detect levels of IL-1β, IL-6, JUN, and PTGS2 mRNA, while Western blot assay was employed to measure phosphorylation levels of NF-κB and IKKα.</p><p><strong>Results: </strong>A comprehensive study revealed that YWHD has 188 active compounds and 250 corresponding targets. After conducting a topological analysis of the PPI network, the study identified 14 high-activity targets, including JUN, PTGS2, IL6, IL1B, CXCL8, MMP9, IL10, ALB, TGFB1, CCL2, IFNG, IL4, MAPK3, and STAT3. Further, GO and KEGG pathway enrichment analysis indicated that YWHD targets inflammation-related genes and regulates IL- 17 and NF-kappa B signaling pathways. Animal studies have shown that YWHD can effectively minimize airway Max Rrs, reduce the levels of inflammatory factors IL4, IL13, IL6, and IgE in BLAF, and improve airway inflammation in rats with asthma. Molecular experiments have also demonstrated that YWHD achieves this by down-regulating the expression levels of IL-1β, IL-6, JUN, and PTGS2 mRNA, inhibiting the phosphorylation modification levels of NF-κB and IKKα, and reducing the levels of inflammatory cytokines IL4, IL13, IL6, and IgE in BALF of rats. Interestingly, molecular docking has revealed that the active compounds in YWHD have a strong binding ability to the screening targets.</p><p><strong>Conclusion: </strong>This research endeavor systematically explicated the active constituents, prospective targets, and signaling pathways of YWHD for asthmatic intervention. The study provides an innovative notion and dependable resource for comprehending the molecular mechanism and pharmaceutical screening of YWHD in the context of asthma treatment.</p>","PeriodicalId":10491,"journal":{"name":"Combinatorial chemistry & high throughput screening","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142750220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Huazhi Rougan Granule Alleviates Liver and Intestinal Damage in Non-Alcoholic Fatty Liver Disease by Regulating miR-122 Expression and TLR4/MyD88/NF-κB Pathway Activation.","authors":"Ping Xie, Xiaowei Jin, Chan Li, Kun Lv, Ming Deng","doi":"10.2174/0113862073290372240603090844","DOIUrl":"https://doi.org/10.2174/0113862073290372240603090844","url":null,"abstract":"<p><strong>Purpose: </strong>miR-122 is upregulated in non-alcoholic fatty liver disease (NAFLD) liver tissue, and knockdown of miR-122 protects hepatocytes from lipid metabolism disorders. This study aimed to investigate whether Huazhi Rougan Granule (HRG) alleviates NAFLD liver and intestinal injury by regulating the miR-122-mediated TLR4/MyD88/NF-κB pathway.</p><p><strong>Methods: </strong>Rats with NAFLD were constructed by high-fat feeding. Serum levels of total cholesterol (TC), triglycerides (TG), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) were measured using a fully automated biochemical instrument. Histopathological changes in the liver and small intestine were observed by HE staining. QRT-PCR detected the expression level of miR-122 in the liver tissues. The protein expression of TLR4, MyD88, NF- κB p65, and p-p65 in liver tissues was detected by western blotting.</p><p><strong>Results: </strong>HRG slowed down the weight gain of NAFLD rats, decreased (P<0.05) the levels of TC, TG, ALT, AST, TNF-α, IL-1β, IL-6, LPS, and Hpt, improved the pathological status of liver and small intestine tissues, upregulated (P<0.05) the expression of ZO-1 and Occludin, downregulated (P<0.05) the protein expression of TLR4, MyD88, and p-p65, and inhibited (P<0.05) the expression of miR-122.</p><p><strong>Conclusion: </strong>HRG may alleviate hepatic and intestinal injuries in rats with NAFLD by regulating the miR-122-mediated TLR4/MyD88/NF-κB pathway.</p>","PeriodicalId":10491,"journal":{"name":"Combinatorial chemistry & high throughput screening","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142675332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Prognostic Value and Immunotherapeutic Characteristics of GFPT2 in Pan-cancer.","authors":"Yiyi Zhou, Yuchao Dong","doi":"10.2174/0113862073235329231005094452","DOIUrl":"https://doi.org/10.2174/0113862073235329231005094452","url":null,"abstract":"<p><strong>Purpose: </strong>The purpose of this study is to investigate the underlying relationship of diagnosis and therapy between glutamine-fructose-6-phosphate transaminase 2 (GFPT2) and various cancers.</p><p><strong>Methods: </strong>The Cancer Genome Atlas (TCGA) database was utilized to get gene expression RNAseq and clinical data for 33 tumors. The immunotherapeutic cohorts, including GSE35640, GSE78220, GSE67501, GSE181815, and IMvigor210, were derived from the Gene Expression Omnibus database (GEO) and a previously released article. Differential expression analysis of GFPT2 was performed using several clinical factors, and prognostic analysis was performed using Cox proportional hazard regression. In addition, the Cell type Identification By Estimating Relative Subsets Of RNA transcripts (CIBERSORT) and the Estimation of STromal and Immune cells in MAlignant Tumor tissues utilizing Expression data (ESTIMATE) algorithms were used to investigate the connection between GFPT2 and the tumor microenvironment. This approach additionally incorporated dynamic immunological indicators, such as tumor mutational burden (TMB) and microsatellite instability (MSI). In addition, a correlation between GFPT2 expression and the effectiveness of anticancer drugs was plotted for discussion.</p><p><strong>Results: </strong>GFPT2 expression significantly differed in 11 out of 33 cancers. Although the distinct correlation between GFPT2 expression and clinical parameters had no wide distribution in pan-cancer, it demonstrated the potential prognostic validity of gene expression. GFPT2 demonstrated a strong correlation with immune infiltration, immune modulators, and immunerelated biomarkers. Furthermore, a variance analysis demonstrated a significant relationship between GFPT2 and the efficacy of immunotherapy. In addition, GFPT2 was associated with increased sensitivity of drugs such as Olaparib and Lenvatinib and decreased sensitivity of drugs such as Nilotinib.</p><p><strong>Conclusion: </strong>Collectively, GFPT2 is potentially useful as a biomarker for prognostic prediction and immune infiltration in a variety of malignancies ,and could lead to exciting new approaches to personalized oncotherapy.</p>","PeriodicalId":10491,"journal":{"name":"Combinatorial chemistry & high throughput screening","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Preparation of DOX-TPP/HA-ss-OA Nanoparticles, Investigation of Drug Release Behavior In Vitro, and Evaluation of Anti-proliferative Activity In Vitro.","authors":"Xuanting Fei, Qiaohong Hu","doi":"10.2174/0113862073330016240911094247","DOIUrl":"10.2174/0113862073330016240911094247","url":null,"abstract":"<p><strong>Objective: </strong>This study aimed to develop and characterize DOX-TPP/HA-ss-OA nanoparticles, utilizing the mitochondria-targeting prodrug doxorubicin-triphenylphosphine (DOXTPP) and a reduction-sensitive amphiphilic polymer, hyaluronic acid-disulfide-oleic acid (HAss- OA). The research focused on evaluating the drug release behavior of these nanoparticles under varying glutathione (GSH) concentrations and their anti-tumor activity in vitro.</p><p><strong>Methods: </strong>DOX-TPP/HA-ss-OA nanoparticles were prepared using probe ultrasound technology. The study examined the impact of different organic solvents on drug loading capacity and encapsulation efficiency to determine the optimal conditions. A single-factor experimental design was used to optimize the formulation process. Key parameters, including particle size and zeta potential, were measured to assess nanoparticle stability and performance. The dynamic dialysis method was employed to evaluate the reduction-sensitive drug release characteristics in media with different GSH concentrations. The MTT assay was used to analyze the growth-inhibitory effects of the nanoparticles on human breast cancer cells (MCF-7) and drug-resistant cells (MCF-7/ADR).</p><p><strong>Results: </strong>The optimized preparation process for DOX-TPP/HA-ss-OA nanoparticles included a drug dosage of 2.0 mg, an oil-to-water volume ratio of 1:5, ultrasonic power of 500 W, and ultrasonic time of 15 minutes. The nanoparticles had an average particle size of 203.72 ± 2.30 nm and a zeta potential of 25.82 ± 0.58 mV, indicating favorable stability and effective drug delivery properties. The nanoparticles exhibited a slow, sustained release of DOX-TPP in pH 7.4 phosphate buffer solution (PBS) and accelerated release in high GSH concentrations, demonstrating reduction-responsive drug release. In vitro studies showed that DOX-TPP/HA-ss-OA nanoparticles significantly inhibited the proliferation of MCF-7 and MCF-7/ADR cells in a dosedependent manner, with enhanced efficacy compared to free DOX and other formulations.</p><p><strong>Conclusion: </strong>DOX-TPP/HA-ss-OA nanoparticles demonstrate excellent reduction sensitivity, effective tumor cell growth inhibition in vitro, and the ability to overcome drug resistance. Including particle size and zeta potential measurements supports their suitability as drug carriers, highlighting their potential for targeted cancer therapy and further development.</p>","PeriodicalId":10491,"journal":{"name":"Combinatorial chemistry & high throughput screening","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142590190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Weihan Gao, Danyang Wang, Yanmei Shi, Yu Sun, Jinlan Deng, Xiayinan Song, Jie Li, Min Zhang
{"title":"Potential Cardiovascular Disease Treatment by Natural Drugs Targeting the HIF-1α Factor and its Pathway.","authors":"Weihan Gao, Danyang Wang, Yanmei Shi, Yu Sun, Jinlan Deng, Xiayinan Song, Jie Li, Min Zhang","doi":"10.2174/0113862073331615241018081811","DOIUrl":"10.2174/0113862073331615241018081811","url":null,"abstract":"<p><p>Cardiovascular diseases (CVDs) remain a key contributor to global morbidity and mortality. Being a vital regulator of hypoxia, hypoxia-inducible factor-1α (HIF-1α) is a crucial player in CVD treatment. Recently, increasing attention has been paid to the effect of natural drugs on CVDs. According to some studies, HIF-1α is a potential target for CVD treatment in traditional Chinese medicine. In this study, we describe the mechanism underlying the regulatory role of HIF-1α in CVDs and summarize 30 natural drugs and 3 formulations for CVD treatment through HIF-1α and its signaling pathway. The study provides new ideas for CVD prevention and treatment.</p>","PeriodicalId":10491,"journal":{"name":"Combinatorial chemistry & high throughput screening","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142590187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Research on the Therapeutic Effect of Qizhu Anti Cancer Recipe on Colorectal Cancer Based on RNA Sequencing Analysis.","authors":"Pingping Zhai, Xueshen Qian, Guangyao Liu, Jingjing Wang, Lei Xie, Decai Tang","doi":"10.2174/0113862073322752241016110001","DOIUrl":"10.2174/0113862073322752241016110001","url":null,"abstract":"<p><strong>Background: </strong>Colorectal cancer is one of the common malignant tumors in clinical practice, and traditional Chinese medicine, as an important adjuvant treatment method, plays important roles in the treatment of malignant tumors.</p><p><strong>Objective: </strong>This study aims to explore the mechanism of action of the Qizhu anti-cancer recipe on colorectal cancer through transcriptome sequencing.</p><p><strong>Methods: </strong>The control group and Qizhu anti-cancer recipe group were established separately, and sequencing of the cells of the two groups was performed using the Illumina sequencing platform. Two sets of Differentially Expressed Genes (DEGs) were screened using the DESeq2 algorithm, and Principal Component Analysis (PCA), Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Reactome, Disease Ontology (DO), and Protein-Protein Interaction (PPI) were used to comprehensively analyze the molecular functions and signaling pathways enriched by DEGs.</p><p><strong>Result: </strong>A total of 122 DEGs were identified through differential analysis, including 24 upregulated genes and 98 downregulated genes. GO analysis showed that DEGs were mainly enriched in functions such as alkaline phase activity, ion transport, cell differentiation, etc.; KEGG analysis showed that DEGs were mainly enriched in pathways such as Thiamine metabolism, apoptosis, signaling pathways regulating pluripotency of stem cells, cellular senescence and so on. Reactom analysis showed that DEGs were mainly enriched in response pathways such as EGR1,2,3 bind to the NAB2 promoter, EGR binds ARC gene, EGR-dependent NAB2 gene expression, etc.; DO analysis showed that differentially expressed genes were mainly enriched in diseases such as disease of cellular proliferation, disease of anatomical entity, organ system cancer, etc.; PPI analysis identified key differentially expressed genes, including DDIT3, CHAC1, TRIB3, and ASNS.</p><p><strong>Conclusion: </strong>Based on transcriptome sequencing and bioinformatics analysis, it was found that the Qizhu anti-cancer recipe may involve DEGs and signaling pathways in the treatment of colorectal cancer. Our study may provide potential drug targets for developing new treatment strategies for colorectal cancer.</p>","PeriodicalId":10491,"journal":{"name":"Combinatorial chemistry & high throughput screening","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142582601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Anchored Chitosan-Functionalized Magnetite Nanoparticles for Crystal Violet Decolorization from Aqueous Samples.","authors":"Mahsa Bandari, Mohsen Mohammadi Galangash, Shahab Shariati, Atefeh Ghavidast","doi":"10.2174/0113862073350298241015071020","DOIUrl":"https://doi.org/10.2174/0113862073350298241015071020","url":null,"abstract":"<p><strong>Introduction: </strong>In this research, 3-(triethoxysilyl)propyl isocyanate (TESPIC) functionalized chitosan was successfully synthesized to fabricate silica-coated magnetite nanoparticles (Fe3O4@SiO2-CS MNPs).</p><p><strong>Method: </strong>The synthesized MNPs were characterized using XRD, FT-IR, SEM, and TEM instruments and were utilized for the decolorization of Crystal Violet cationic dye (CV). The affecting variables controlling CV removal efficiency were investigated using the Taguchi fractional factorial design method (L16 array).</p><p><strong>Result: </strong>Under the optimized removal conditions (adsorbent amount = 0.12 g (4.8 g L-1), pH = 4, ionic strength = 0.05 mol L-1 NaCl, and 30 min stirring), 98.2% of the CV dye was eliminated. The kinetic and equilibrium adsorption isotherms were explained by the pseudo-second-order kinetic (R2 = 0.999) and Freundlich isotherm models, respectively. MATLAB's fmincon function as an efficient solution was applied in order to compare the Redlich-Peterson three-parametric isotherm model with two-parametric models. Moreover, the Fe3O4@SiO2-CS-TESPIC MNPs showed recyclability and reusability for subsequent runs.</p><p><strong>Conclusion: </strong>The findings confirmed that these functional MNPs can be considered as proper adsorbents for the removal of CV dye from the aqueous solutions.</p>","PeriodicalId":10491,"journal":{"name":"Combinatorial chemistry & high throughput screening","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142544154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}