Li Dong, Xinyang Jiang, Yong Liu, Yunlong Gao, Yan Yang
{"title":"Improved Visualization Method of DNA Sequences and its Application in Phylogenetic Analysis.","authors":"Li Dong, Xinyang Jiang, Yong Liu, Yunlong Gao, Yan Yang","doi":"10.2174/0113862073379972250612103433","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>With a large number of species' genomes assembled, sequence comparison has become an effective method for further studying biological classification and evolution. Traditional sequence alignment relies on predefined scoring functions, but it is computationally intensive and lacks molecular justification for scoring the differences between sequences. Therefore, we have developed a graphical representation method for DNA sequences to facilitate better sequence comparison and evolutionary analysis.</p><p><strong>Method: </strong>In this article, we introduce a novel method for representing DNA sequences using three-dimensional (3D) graphics. This method possesses two significant properties: (1) the graphical representation is acyclic; (2) each DNA sequence maintains a bijective relationship with its graphical representation.</p><p><strong>Result: </strong>Leveraging this proposed visualization method, we computed the corresponding ALE index for any DNA sequence by converting it into an L/L matrix and constructed a 12-dimensional feature vector.</p><p><strong>Conclusion: </strong>The feasibility of our proposed method has been validated through the construction of phylogenetic trees in four test sets: terrestrial vertebrates, hantavirus, fish and Japanese encephalitis virus.</p>","PeriodicalId":10491,"journal":{"name":"Combinatorial chemistry & high throughput screening","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorial chemistry & high throughput screening","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113862073379972250612103433","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: With a large number of species' genomes assembled, sequence comparison has become an effective method for further studying biological classification and evolution. Traditional sequence alignment relies on predefined scoring functions, but it is computationally intensive and lacks molecular justification for scoring the differences between sequences. Therefore, we have developed a graphical representation method for DNA sequences to facilitate better sequence comparison and evolutionary analysis.
Method: In this article, we introduce a novel method for representing DNA sequences using three-dimensional (3D) graphics. This method possesses two significant properties: (1) the graphical representation is acyclic; (2) each DNA sequence maintains a bijective relationship with its graphical representation.
Result: Leveraging this proposed visualization method, we computed the corresponding ALE index for any DNA sequence by converting it into an L/L matrix and constructed a 12-dimensional feature vector.
Conclusion: The feasibility of our proposed method has been validated through the construction of phylogenetic trees in four test sets: terrestrial vertebrates, hantavirus, fish and Japanese encephalitis virus.
期刊介绍:
Combinatorial Chemistry & High Throughput Screening (CCHTS) publishes full length original research articles and reviews/mini-reviews dealing with various topics related to chemical biology (High Throughput Screening, Combinatorial Chemistry, Chemoinformatics, Laboratory Automation and Compound management) in advancing drug discovery research. Original research articles and reviews in the following areas are of special interest to the readers of this journal:
Target identification and validation
Assay design, development, miniaturization and comparison
High throughput/high content/in silico screening and associated technologies
Label-free detection technologies and applications
Stem cell technologies
Biomarkers
ADMET/PK/PD methodologies and screening
Probe discovery and development, hit to lead optimization
Combinatorial chemistry (e.g. small molecules, peptide, nucleic acid or phage display libraries)
Chemical library design and chemical diversity
Chemo/bio-informatics, data mining
Compound management
Pharmacognosy
Natural Products Research (Chemistry, Biology and Pharmacology of Natural Products)
Natural Product Analytical Studies
Bipharmaceutical studies of Natural products
Drug repurposing
Data management and statistical analysis
Laboratory automation, robotics, microfluidics, signal detection technologies
Current & Future Institutional Research Profile
Technology transfer, legal and licensing issues
Patents.