{"title":"DNA复制应激相关基因作为膀胱癌预后生物标志物的鉴定","authors":"Fei Zhang, Shuai Li, Zhijie Zhang, Jiulong Li, Huiqin Liu, Xudong Ma, Zhigang Yang","doi":"10.2174/0113862073396305250526102508","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Bladder cancer (BLCA) is a highly aggressive malignancy with poor prognosis. DNA replication stress-related genes (DRSGs) hold prognostic significance in multiple cancers, and their expression patterns in BLCA may reveal novel biomarkers and therapeutic targets.</p><p><strong>Methods: </strong>This study was designed using a public database and the Cancer Genome Atlas (TCGA). Genes associated with DNA replication stress in BLCA were discovered by analyzing data from the TCGA and GEO databases using bioinformatics tools. The prognostic gene expression profiles in BLCA cell lines were analyzed using Western blotting (WB). The motility capacity of BLCA cells was evaluated using the wound healing and Transwell migration assays, while cell growth was ascertained with the CCK-8 assay.</p><p><strong>Results: </strong>Five DRSGs with prognostic significance were identified, and a risk score model was constructed using univariate Cox regression and the Least Absolute Shrinkage and Selection Operator (LASSO) regression algorithm. Kaplan-Meier (KM) analysis showed worse Overall Survival (OS) in the high-risk group (P < 0.05). Gene Set Enrichment Analysis (GSEA) indicated involvement in tumor-related pathways. The nomogram effectively predicted OS in both training and validation cohorts. WB and functional assays confirmed gene expression and effects on BLCA cell proliferation and migration.</p><p><strong>Discussion: </strong>This study first validates DRSGs' prognostic value in bladder cancer, highlighting potential biomarkers and targets. Limitations include reliance on public data and in vitro tests. Future research should use multicenter cohorts and animal models to confirm clinical relevance.</p>","PeriodicalId":10491,"journal":{"name":"Combinatorial chemistry & high throughput screening","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of DNA Replication Stress-Related Genes as Prognostic Biomarkers for Bladder Cancer.\",\"authors\":\"Fei Zhang, Shuai Li, Zhijie Zhang, Jiulong Li, Huiqin Liu, Xudong Ma, Zhigang Yang\",\"doi\":\"10.2174/0113862073396305250526102508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Bladder cancer (BLCA) is a highly aggressive malignancy with poor prognosis. DNA replication stress-related genes (DRSGs) hold prognostic significance in multiple cancers, and their expression patterns in BLCA may reveal novel biomarkers and therapeutic targets.</p><p><strong>Methods: </strong>This study was designed using a public database and the Cancer Genome Atlas (TCGA). Genes associated with DNA replication stress in BLCA were discovered by analyzing data from the TCGA and GEO databases using bioinformatics tools. The prognostic gene expression profiles in BLCA cell lines were analyzed using Western blotting (WB). The motility capacity of BLCA cells was evaluated using the wound healing and Transwell migration assays, while cell growth was ascertained with the CCK-8 assay.</p><p><strong>Results: </strong>Five DRSGs with prognostic significance were identified, and a risk score model was constructed using univariate Cox regression and the Least Absolute Shrinkage and Selection Operator (LASSO) regression algorithm. Kaplan-Meier (KM) analysis showed worse Overall Survival (OS) in the high-risk group (P < 0.05). Gene Set Enrichment Analysis (GSEA) indicated involvement in tumor-related pathways. The nomogram effectively predicted OS in both training and validation cohorts. WB and functional assays confirmed gene expression and effects on BLCA cell proliferation and migration.</p><p><strong>Discussion: </strong>This study first validates DRSGs' prognostic value in bladder cancer, highlighting potential biomarkers and targets. Limitations include reliance on public data and in vitro tests. Future research should use multicenter cohorts and animal models to confirm clinical relevance.</p>\",\"PeriodicalId\":10491,\"journal\":{\"name\":\"Combinatorial chemistry & high throughput screening\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorial chemistry & high throughput screening\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0113862073396305250526102508\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorial chemistry & high throughput screening","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113862073396305250526102508","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Identification of DNA Replication Stress-Related Genes as Prognostic Biomarkers for Bladder Cancer.
Introduction: Bladder cancer (BLCA) is a highly aggressive malignancy with poor prognosis. DNA replication stress-related genes (DRSGs) hold prognostic significance in multiple cancers, and their expression patterns in BLCA may reveal novel biomarkers and therapeutic targets.
Methods: This study was designed using a public database and the Cancer Genome Atlas (TCGA). Genes associated with DNA replication stress in BLCA were discovered by analyzing data from the TCGA and GEO databases using bioinformatics tools. The prognostic gene expression profiles in BLCA cell lines were analyzed using Western blotting (WB). The motility capacity of BLCA cells was evaluated using the wound healing and Transwell migration assays, while cell growth was ascertained with the CCK-8 assay.
Results: Five DRSGs with prognostic significance were identified, and a risk score model was constructed using univariate Cox regression and the Least Absolute Shrinkage and Selection Operator (LASSO) regression algorithm. Kaplan-Meier (KM) analysis showed worse Overall Survival (OS) in the high-risk group (P < 0.05). Gene Set Enrichment Analysis (GSEA) indicated involvement in tumor-related pathways. The nomogram effectively predicted OS in both training and validation cohorts. WB and functional assays confirmed gene expression and effects on BLCA cell proliferation and migration.
Discussion: This study first validates DRSGs' prognostic value in bladder cancer, highlighting potential biomarkers and targets. Limitations include reliance on public data and in vitro tests. Future research should use multicenter cohorts and animal models to confirm clinical relevance.
期刊介绍:
Combinatorial Chemistry & High Throughput Screening (CCHTS) publishes full length original research articles and reviews/mini-reviews dealing with various topics related to chemical biology (High Throughput Screening, Combinatorial Chemistry, Chemoinformatics, Laboratory Automation and Compound management) in advancing drug discovery research. Original research articles and reviews in the following areas are of special interest to the readers of this journal:
Target identification and validation
Assay design, development, miniaturization and comparison
High throughput/high content/in silico screening and associated technologies
Label-free detection technologies and applications
Stem cell technologies
Biomarkers
ADMET/PK/PD methodologies and screening
Probe discovery and development, hit to lead optimization
Combinatorial chemistry (e.g. small molecules, peptide, nucleic acid or phage display libraries)
Chemical library design and chemical diversity
Chemo/bio-informatics, data mining
Compound management
Pharmacognosy
Natural Products Research (Chemistry, Biology and Pharmacology of Natural Products)
Natural Product Analytical Studies
Bipharmaceutical studies of Natural products
Drug repurposing
Data management and statistical analysis
Laboratory automation, robotics, microfluidics, signal detection technologies
Current & Future Institutional Research Profile
Technology transfer, legal and licensing issues
Patents.