{"title":"Use of nanoparticle concentration and magnetic fields to control the structures of superparamagnetic Fe3O4 nanoparticle Langmuir films","authors":"Cathy E. McNamee , Daisuke Usui , Yuto Yamada , Hiroaki Shigekura , Shinpei Yamamoto","doi":"10.1016/j.colcom.2025.100817","DOIUrl":"10.1016/j.colcom.2025.100817","url":null,"abstract":"<div><div>We investigated how structures formed by hydrophobic superparamagnetic Fe<sub>3</sub>O<sub>4</sub> nanoparticles (NPs) at air-water interfaces could be changed, in order to achieve films with the desired structure. NP films were prepared on water using the Langmuir trough, and deposited onto glass substrates. The effect of the NP spreading solution concentration (<em>C</em><sub><em>NP</em></sub>) and the magnetic field strength on the NP aggregation were determined from surface pressure-area/particle isotherms and Atomic Force Microscope images. In the absence of a magnetic field, the NPs aggregated to form large and heterogeneous domains. The size and non-homogeneity of the domains increased as <em>C</em><sub><em>NP</em></sub> increased, a result explained by increasing attractive hydrophobic interactions. A magnetic field decreased the size and non-homogeneity of these domains, a result explained by a directional attractive magnetic force. The NP film structure depended on <em>C</em><sub><em>NP</em></sub> and the magnetic field strength. Structural changes by the magnetic field became more visible as <em>C</em><sub><em>NP</em></sub> was increased.</div></div>","PeriodicalId":10483,"journal":{"name":"Colloid and Interface Science Communications","volume":"64 ","pages":"Article 100817"},"PeriodicalIF":4.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143141274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anil Pareek , Devesh U. Kapoor , Sandeep Kumar Yadav , Summya Rashid , Mohammad Fareed , Mohammad Suhail Akhter , Ghazala Muteeb , Madan Mohan Gupta , Bhupendra G. Prajapati
{"title":"Advancing lipid nanoparticles: A pioneering technology in cosmetic and dermatological treatments","authors":"Anil Pareek , Devesh U. Kapoor , Sandeep Kumar Yadav , Summya Rashid , Mohammad Fareed , Mohammad Suhail Akhter , Ghazala Muteeb , Madan Mohan Gupta , Bhupendra G. Prajapati","doi":"10.1016/j.colcom.2024.100814","DOIUrl":"10.1016/j.colcom.2024.100814","url":null,"abstract":"<div><div>Lipid nanoparticles (LNPs) represent a groundbreaking advancement in the realms of cosmetics and dermatology, providing advantages over traditional formulations. This paper explores the revolutionary potential of LNPs, particularly Solid Lipid Nanoparticles (SLNs) and Nanostructured Lipid Carriers (NLCs), in enhancing cosmetic and dermatological applications. The review highlights the advantages of LNPs, including improved skin penetration, improved bioavailability and controlled release of active ingredients, which together contribute to their superior performance compared to conventional formulations. Notable applications discussed include their roles in acne treatment, anti-aging solutions, wound healing, skin-lightening products, and sunscreens. This study examines the structural features and formulation techniques of LNPs, highlighting biocompatibility, and targeted delivery capabilities. We also explore emerging uses such as genetic medicine and mRNA vaccine delivery, alongside market trends and consumer acceptance. By summarizing recent developments and identifying existing challenges, this paper offers a thorough overview of LNPs for future research in pharmaceutical and cosmetic advancements.</div></div>","PeriodicalId":10483,"journal":{"name":"Colloid and Interface Science Communications","volume":"64 ","pages":"Article 100814"},"PeriodicalIF":4.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143141652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shi Lan , Mengnan Chu , Tingrui Yuan , Yanyang Duan , Shuang Zhao , Xianliang Sheng , Alideertu Dong
{"title":"Construction of superficial pyrrolidone-rich polymer nanoparticles as integrated sustainable materials for iodine adsorption and bacteria eradication","authors":"Shi Lan , Mengnan Chu , Tingrui Yuan , Yanyang Duan , Shuang Zhao , Xianliang Sheng , Alideertu Dong","doi":"10.1016/j.colcom.2024.100812","DOIUrl":"10.1016/j.colcom.2024.100812","url":null,"abstract":"<div><div>The past few decades have witnessed plenty of research activities in advanced adsorbents for iodine pollutant treatment, but little attention has been paid to the reutilization of them. Herein, we report on superficial pyrrolidone-rich polymer nanoparticles (<em>i.e.</em>, PMP NPs) as integrated sustainable materials for the effective removal of iodine from waste, coupled with their reutilization in antibacterial-associated areas. The pyrrolidone groups on the surface of PMP NPs served as adsorbing sites for capturing iodine and having the special capability of desorbing iodine in the presence of starch or bacteria. The as-captured iodine showed excellent <em>in vitro</em> antibacterial ability against 10<sup>7</sup> CFU·mL<sup>−1</sup> of <em>Escherichia coli</em> (<em>E. coli</em>) and <em>Staphylococcus aureus</em> (<em>S. aureus</em>). We believed that this “turning waste into treasure” strategy based on the synergism of iodine adsorption and antibacterial utilization should have great potential for environmental remediation and public healthcare.</div></div>","PeriodicalId":10483,"journal":{"name":"Colloid and Interface Science Communications","volume":"64 ","pages":"Article 100812"},"PeriodicalIF":4.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143097235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jun Nozawa , Masahide Sato , Satoshi Uda , Kozo Fujiwara
{"title":"Multi-layer kagome lattices assembled with isotropic spherical colloids via heteroepitaxial growth","authors":"Jun Nozawa , Masahide Sato , Satoshi Uda , Kozo Fujiwara","doi":"10.1016/j.colcom.2024.100815","DOIUrl":"10.1016/j.colcom.2024.100815","url":null,"abstract":"<div><div>The control of structure is crucial for diverse applications of colloidal crystals. Open-structure colloidal crystals are promising in their novel optical or mechanical properties, yet fabrication remains a significant challenge. Here, we demonstrate fabrication of multi-layer colloidal kagome lattices via heteroepitaxial growth. Unlike previous methods that rely on anisotropic particles, such as Janus particles, our approach utilizes common isotropic spherical polystyrene particles. We fabricated multi-layered kagome lattices, in contrast to techniques that were limited to forming single layers. The first layer in the kagome lattice formation on a substrate was a multi-step process, as revealed by in situ-observations. Then repeated stacking of kagome lattice layers occurred stably. This heteroepitaxial growth technique offers a feasible approach to self-assemble open-structure colloidal crystals.</div></div>","PeriodicalId":10483,"journal":{"name":"Colloid and Interface Science Communications","volume":"64 ","pages":"Article 100815"},"PeriodicalIF":4.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143141654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Honeycomb BiFeO3 catalysts harvest mechanical energy from ultrasonic vibrations for efficient piezoelectric-catalyzed degradation of antibiotics","authors":"Jun Teng , Du Tao , Feng Li , Taohai Li","doi":"10.1016/j.colcom.2024.100813","DOIUrl":"10.1016/j.colcom.2024.100813","url":null,"abstract":"<div><div>Piezocatalysis has attracted much attention for its efficient performance in removing pharmaceuticals and dyes from wastewater. In this work, the piezoelectric system was applied by environmental-benign BiFeO<sub>3</sub> catalysis for the removal of antibiotics in the water. The irregular honeycomb-like BiFeO<sub>3</sub> was prepared through a simple co-precipitation route with composite precipitants. The results demonstrated that BiFeO<sub>3</sub> exhibited excellent piezoelectric catalytic degradation performance for metronidazole under ultrasonic vibration. The effects of catalyst dosage, initial metronidazole concentration, solution pH, and ultrasonic power on piezoelectric catalytic efficiency were systematically investigated. It was found that the highest piezoelectric catalytic degradation efficiency of metronidazole was 98.87 %. The catalyst stability of the catalyst showed that it had excellent piezoelectric catalytic degradation Finally, the degradation efficiency of metronidazole was only reduced by 4 % through four cycles, which demonstrated the good stability and reusability of BiFeO<sub>3</sub>.</div></div>","PeriodicalId":10483,"journal":{"name":"Colloid and Interface Science Communications","volume":"64 ","pages":"Article 100813"},"PeriodicalIF":4.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143141655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Adhesion mechanisms and design strategies for bioadhesives","authors":"Yihang Ding , Lisha Yu , Zhengwei Mao","doi":"10.1016/j.colcom.2024.100809","DOIUrl":"10.1016/j.colcom.2024.100809","url":null,"abstract":"<div><div>Bioadhesives are widely used in medical fields due to their compatibility with biological soft tissues and their ability to facilitate non-invasive wound closure. Despite their widespread clinical applications, the inadequate adhesion performance highlights the need for further refinement and innovation of these materials. A profound comprehension of the underlying mechanisms of tissue adhesion is essential for the successful development of bioadhesives. This review elucidates adhesion mechanisms and design principles for bioadhesives, emphasizing strategies to enhance interfacial adhesion and cohesion performance. We also provide a forward-looking perspective on the challenges and emerging trends for the development of next-generation bioadhesives. The progress of bioadhesives has significant potential to revolutionize wound management.</div></div>","PeriodicalId":10483,"journal":{"name":"Colloid and Interface Science Communications","volume":"63 ","pages":"Article 100809"},"PeriodicalIF":4.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142552703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Agnese Bondi , Francesca Ferrara , Walter Pula , Paolo Mariani , Alessia Pepe , Markus Drechsler , Leda Montesi , Stefano Manfredini , Giuseppe Valacchi , Elisabetta Esposito
{"title":"Spongosome-based co-delivery of curcumin and Piperine: A novel strategy for mitigating pollution-induced skin damage","authors":"Agnese Bondi , Francesca Ferrara , Walter Pula , Paolo Mariani , Alessia Pepe , Markus Drechsler , Leda Montesi , Stefano Manfredini , Giuseppe Valacchi , Elisabetta Esposito","doi":"10.1016/j.colcom.2024.100811","DOIUrl":"10.1016/j.colcom.2024.100811","url":null,"abstract":"<div><div>The present study aims to explore the potential role of curcumin and piperine loaded spongosomes to protect the skin against pollution-induced damage. The hydration of a glyceryl monooleate and sodium cholate thin film, followed by homogenization, led to dispersions with an internal spongiform structure, as demonstrated by cryogenic transmission electron microscopy and small angle X-ray scattering. Spongosome mean diameter measured by photon correlation spectroscopy was roughly 200 nm. Curcumin and piperine were efficiently encapsulated in spongosomes, as demonstrated by ultrafiltration and HPLC analysis. In vitro permeation tests revealed that piperine enhances the penetration of curcumin, suggesting a further improved bioavailability and sustained release. Ex vivo studies using human skin biopsies showed that curcumin and piperine-loaded spongosomes protect the skin against diesel exhaust emissions, preserving the levels of key skin barrier proteins, as filaggrin and involucrin. The formulations exhibited non-irritating properties in human patch tests, supporting their suitability for topical application.</div></div>","PeriodicalId":10483,"journal":{"name":"Colloid and Interface Science Communications","volume":"63 ","pages":"Article 100811"},"PeriodicalIF":4.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142742888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaojing Zhang , Jia Chen , Junxiao Li , Weina Wang , Xi Chen , Xingtang Fang , Chunlei Zhang , Yanhua Hou , Min Lai
{"title":"Icariin-loaded multilayered films deposited onto micro/nanostructured titanium enhances osteogenesis and reduces inflammation under diabetic conditions","authors":"Xiaojing Zhang , Jia Chen , Junxiao Li , Weina Wang , Xi Chen , Xingtang Fang , Chunlei Zhang , Yanhua Hou , Min Lai","doi":"10.1016/j.colcom.2024.100808","DOIUrl":"10.1016/j.colcom.2024.100808","url":null,"abstract":"<div><div>Disordered bone metabolism and the associated inflammatory microenvironment in diabetic patients make treating bone fractures difficult in this patient population. However, the inherent bioinert properties of titanium implants result in insufficient osseointegration, making it important to develop an efficient surface modification strategy to provide titanium implants with enhanced osseointegration capabilities in diabetic conditions. Here, a micro/nanostructure was constructed on titanium through acid etching and anodic oxidation, followed by an addition of a multilayered film of chitosan (CHI), gelatin (GEL) and icariin (ICA) onto the surface of micro/nanostructured titanium using a layer-by-layer self-assembly technology. The characterization results indicated that the icariin-loaded multilayered film was successfully deposited onto titanium surface and achieved a long-term sustainable release of ICA. Cell experiments showed that the icariin-loaded multilayered films modified titanium promoted osteogenesis, inhibited osteoclast generation, and reduced inflammatory reaction under diabetic conditions. This study provides an avenue for treating fractures in patients with diabetes.</div></div>","PeriodicalId":10483,"journal":{"name":"Colloid and Interface Science Communications","volume":"63 ","pages":"Article 100808"},"PeriodicalIF":4.7,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142528420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Giorgia Ballabio , Sara Sangiorgio , Eleonora Pargoletti , Rita Gelli , Massimo Bonini , Marco Rabuffetti , Giuseppe Cappelletti , Giovanna Speranza
{"title":"From dairy waste to value-added bio-based surfactants","authors":"Giorgia Ballabio , Sara Sangiorgio , Eleonora Pargoletti , Rita Gelli , Massimo Bonini , Marco Rabuffetti , Giuseppe Cappelletti , Giovanna Speranza","doi":"10.1016/j.colcom.2024.100807","DOIUrl":"10.1016/j.colcom.2024.100807","url":null,"abstract":"<div><div>Cheese whey permeate, the main waste stream of dairy industry, was used as a starting material for the production of bio-based surfactants (SFAEs). Specifically, the first step in the sustainable chemoenzymatic synthesis of <em>n</em>-butyl 6-<em>O</em>-palmitoyl-<span>D</span>-glycosides (Fischer glycosylation followed by enzymatic esterification) was optimized by a chemometric study. The surfactancy of the prepared isomeric mixtures was deeply investigated in terms of static and dynamic interfacial tension and emulsifying capability over time.</div></div>","PeriodicalId":10483,"journal":{"name":"Colloid and Interface Science Communications","volume":"63 ","pages":"Article 100807"},"PeriodicalIF":4.7,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2215038224000426/pdfft?md5=eec654311e93bf0c2e385beccb257318&pid=1-s2.0-S2215038224000426-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142312182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hikaru Namigata , Kanako Watanabe , Tom A.J. Welling , Keishi Suga , Daisuke Nagao
{"title":"Colloidal photonic crystals with tunable reflection wavelengths or intensities derived from their reconfigurable structures","authors":"Hikaru Namigata , Kanako Watanabe , Tom A.J. Welling , Keishi Suga , Daisuke Nagao","doi":"10.1016/j.colcom.2024.100806","DOIUrl":"10.1016/j.colcom.2024.100806","url":null,"abstract":"<div><p>Colloidal photonic crystals (CPCs), which are the ordered assemblies of colloidal particles, can reflect specific wavelengths of light. In particular, CPCs with controllable optical properties are promising materials for advanced photonic applications. Principally, the optical properties of CPCs, i.e., reflection wavelengths and reflection intensities, are controllable. These two characteristics are closely related to the assembled structures of CPCs, especially interplanar spacing and regularity of the assembled structures. The reflection wavelength is proportional to the interplanar spacing of the structure; thus, uniform expanding/contracting of particle-to-particle distance causes red/blue shift of reflection peaks. On the other hand, the regularity affects the reflection intensity; reversible order–disorder transitions enable tuning of the reflection peak intensities. To control the structures of CPCs, various stimuli-responsive polymers and electromagnetic interactions of colloids have been employed. This review explains the above methods and clarifies the future perspectives.</p></div>","PeriodicalId":10483,"journal":{"name":"Colloid and Interface Science Communications","volume":"62 ","pages":"Article 100806"},"PeriodicalIF":4.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2215038224000414/pdfft?md5=1a401ae7e9b68616a27dcb098314523e&pid=1-s2.0-S2215038224000414-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142148643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}