Clinical Pharmacokinetics最新文献

筛选
英文 中文
Population Pharmacokinetics of Telmisartan in Healthy Subjects and Hypertensive Patients. 替米沙坦在健康人群和高血压患者中的人群药代动力学。
IF 4.6 2区 医学
Clinical Pharmacokinetics Pub Date : 2025-02-01 Epub Date: 2025-01-14 DOI: 10.1007/s40262-024-01471-3
In Hwan Jeong, Sooyoon Ryu, Nayoung Han, Christine E Staatz, In-Hwan Baek
{"title":"Population Pharmacokinetics of Telmisartan in Healthy Subjects and Hypertensive Patients.","authors":"In Hwan Jeong, Sooyoon Ryu, Nayoung Han, Christine E Staatz, In-Hwan Baek","doi":"10.1007/s40262-024-01471-3","DOIUrl":"10.1007/s40262-024-01471-3","url":null,"abstract":"<p><strong>Background and objective: </strong>Telmisartan exhibits significant pharmacokinetic (PK) variability, but it remains unclear whether its PK profile is altered in hypertensive patients. This study aimed to characterize telmisartan PKs by conducting a meta-analysis and developing a pooled population PK model based on data from healthy subjects and hypertensive patients.</p><p><strong>Methods: </strong>Relevant literature was identified by a systematic approach. Eighteen studies were selected for analysis, which included 394 healthy subjects receiving single doses of telmisartan, 190 healthy subjects receiving repeated doses, along with 295 hypertensive patients receiving repeated doses. Pooled population PK analysis incorporated 20 mean concentration-time profiles from 14 studies. Meta-analyses were performed using OpenMeta-Analyst, and population PK modeling was performed using NONMEM<sup>®</sup>.</p><p><strong>Results: </strong>Repeated telmisartan doses increased peak plasma concentrations. However, other noncompartmental PK parameters remained consistent across healthy and hypertensive populations. Telmisartan PKs were best described using a two-compartment model with first-order absorption and elimination in pooled analysis. Typical PK parameter values for apparent clearance (CL/F), apparent central and peripheral volumes of distribution (V<sub>1</sub>/F and V<sub>2</sub>/F), absorption rate constant (k<sub>a</sub>), and absorption lag time were 18.3 L/h, 20.7 L, 360 L, 0.183 h<sup>-1</sup> and 0.228 h, respectively. Interindividual variabilities in CL/F, V<sub>1</sub>/F, and k<sub>a</sub> were 84%, 122%, and 106%, respectively. Covariate analysis revealed significantly lower CL/F (63.7%) and V<sub>1</sub>/F (90.3%) values in hypertensive patients than healthy subjects.</p><p><strong>Conclusion: </strong>These findings quantified the variability of telmisartan PK profile and highlighted the differences between healthy individuals and hypertensive patients, suggesting the need for optimized dosage strategies to improve therapeutic outcomes.</p>","PeriodicalId":10405,"journal":{"name":"Clinical Pharmacokinetics","volume":" ","pages":"285-295"},"PeriodicalIF":4.6,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142977809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Population Pharmacokinetics of Meropenem Across the Adult Lifespan. 美罗培南在成年期的群体药代动力学。
IF 4.6 2区 医学
Clinical Pharmacokinetics Pub Date : 2025-02-01 Epub Date: 2024-12-16 DOI: 10.1007/s40262-024-01465-1
Angelique E Boutzoukas, Stephen J Balevic, Marion Hemmersbach-Miller, Patricia L Winokur, Kenan Gu, Austin W Chan, Michael Cohen-Wolkowiez, Thomas Conrad, Guohua An, Carl M J Kirkpatrick, Geeta K Swamy, Emmanuel B Walter, Kenneth E Schmader, Cornelia B Landersdorfer
{"title":"Population Pharmacokinetics of Meropenem Across the Adult Lifespan.","authors":"Angelique E Boutzoukas, Stephen J Balevic, Marion Hemmersbach-Miller, Patricia L Winokur, Kenan Gu, Austin W Chan, Michael Cohen-Wolkowiez, Thomas Conrad, Guohua An, Carl M J Kirkpatrick, Geeta K Swamy, Emmanuel B Walter, Kenneth E Schmader, Cornelia B Landersdorfer","doi":"10.1007/s40262-024-01465-1","DOIUrl":"10.1007/s40262-024-01465-1","url":null,"abstract":"<p><strong>Background and objective: </strong>We conducted an opportunistic pharmacokinetic study to evaluate the population pharmacokinetics of meropenem, an antimicrobial commonly used to treat Gram-negative infections in adults of different ages, including older adults, and determined optimal dosing regimens.</p><p><strong>Methods: </strong>A total of 99 patients were included. The population pharmacokinetic models used had two compartments: zero-order input and linear elimination. Covariates evaluated included renal function, body size, age, sex, vasopressor use, and frailty, using the Canadian Study of Health and Aging Clinical Frailty score (in patients aged ≥ 65 years). We simulated optimal dosing regimens by renal function and by age group to achieve therapeutic target attainment.</p><p><strong>Results: </strong>Participants' ages ranged from 20 to 95 years, with an average age of 57.4 years, and 22% (23/103) were aged ≥ 75 years. Creatinine clearance had the greatest impact on the clearance of meropenem. After accounting for renal function and body size, no other covariates resulted in a significant impact on the pharmacokinetics of meropenem. Simulations indicated that patients with normal renal function achieved ≥ 90% target attainment only for organisms with minimum inhibitory concentrations (MICs) ≤ 4 mg/L using the least strict surrogate target of unbound concentration > MIC (fT<sub>>MIC</sub>) for 40% of the dosing interval. For the conservative target fT<sub>>4xMIC</sub> for 100% of the dosing interval, extended infusion may be required even for organisms with MICs up to 0.25 mg/L. Patients with renal impairment could achieve ≥ 90% target attainment for more resistant organisms, but extended infusion did not increase the MICs up to which target attainment could be achieved.</p><p><strong>Conclusions: </strong>Meropenem dosing should be based on renal function rather than age. For patients without renal impairment, extended infusion may increase the probability of target attainment.</p>","PeriodicalId":10405,"journal":{"name":"Clinical Pharmacokinetics","volume":" ","pages":"229-241"},"PeriodicalIF":4.6,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142834336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Clinical Pharmacokinetics and Safety of Remdesivir in Phase I Participants with Varying Degrees of Renal Impairment. 雷米替韦在不同程度肾功能受损的 I 期参与者中的临床药代动力学和安全性。
IF 4.6 2区 医学
Clinical Pharmacokinetics Pub Date : 2025-01-01 Epub Date: 2024-11-19 DOI: 10.1007/s40262-024-01453-5
Haeyoung Zhang, Rita Humeniuk, Sean Regan, Yiannis Koullias, Santosh Davies, Amy John, Gong Shen, Deqing Xiao, Robert H Hyland, Helen Winter, Aryun Kim
{"title":"Clinical Pharmacokinetics and Safety of Remdesivir in Phase I Participants with Varying Degrees of Renal Impairment.","authors":"Haeyoung Zhang, Rita Humeniuk, Sean Regan, Yiannis Koullias, Santosh Davies, Amy John, Gong Shen, Deqing Xiao, Robert H Hyland, Helen Winter, Aryun Kim","doi":"10.1007/s40262-024-01453-5","DOIUrl":"10.1007/s40262-024-01453-5","url":null,"abstract":"<p><strong>Background and objective: </strong>Remdesivir is a nucleotide analog prodrug approved for the treatment of COVID-19. This study evaluated the pharmacokinetics and safety of remdesivir and its metabolites (GS-704277 and GS-441524) in participants with varying degrees of renal impairment. Results of this phase I study, along with those of a phase III study, contributed to an extension of indication for remdesivir in the USA and Europe for use in patients with COVID-19 with all stages of renal impairment, including those on dialysis, with no dose adjustment.</p><p><strong>Methods: </strong>This phase I, open-label, parallel-group study enrolled participants who had mild (n = 12), moderate (n = 11), or severe (n = 10) renal impairment or kidney failure (n = 6 with dialysis, n = 4 without dialysis). Healthy matched controls were enrolled as reference. Remdesivir was given as single intravenous doses of 100 mg (mild and moderate renal impairment), 40 mg (severe renal impairment, kidney failure predialysis), and 20 mg (kidney failure postdialysis and without dialysis).</p><p><strong>Results: </strong>Plasma pharmacokinetics of remdesivir were not affected by mild, moderate, or severe renal impairment or kidney failure. Geometric least squares mean ratios ranged from 0.8 to 1.2 for remdesivir area under the plasma concentration-time curve (AUC). GS-704277 AUC was up to 2.8-fold higher and GS-441524 AUC up to 7.9-fold higher in participants with renal impairment. Adverse events and laboratory abnormalities were consistent with the existing safety profile for remdesivir.</p><p><strong>Conclusions: </strong>Observed pharmacokinetics for remdesivir and its metabolites in participants with renal impairment aligned with expected changes based on known routes of elimination. Remdesivir was generally safe and well tolerated in participants with renal impairment, and no new safety concerns were identified. These results, along with those from the phase III study in patients with COVID-19 with severely reduced kidney function, support the use of remdesivir in patients with any degree of renal impairment with no dose adjustments.</p><p><strong>Trial registration: </strong>EudraCT no. 2020-003441-10; 9 July 2020.</p>","PeriodicalId":10405,"journal":{"name":"Clinical Pharmacokinetics","volume":" ","pages":"67-78"},"PeriodicalIF":4.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142674933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Static Versus Dynamic Model Predictions of Competitive Inhibitory Metabolic Drug-Drug Interactions via Cytochromes P450: One Step Forward and Two Steps Backwards. 通过细胞色素P450的竞争性抑制代谢药物相互作用的静态与动态模型预测:前进一步,后退两步。
IF 4.6 2区 医学
Clinical Pharmacokinetics Pub Date : 2025-01-01 Epub Date: 2024-12-10 DOI: 10.1007/s40262-024-01457-1
Ivan Tiryannik, Aki T Heikkinen, Iain Gardner, Anthonia Onasanwo, Masoud Jamei, Thomas M Polasek, Amin Rostami-Hodjegan
{"title":"Static Versus Dynamic Model Predictions of Competitive Inhibitory Metabolic Drug-Drug Interactions via Cytochromes P450: One Step Forward and Two Steps Backwards.","authors":"Ivan Tiryannik, Aki T Heikkinen, Iain Gardner, Anthonia Onasanwo, Masoud Jamei, Thomas M Polasek, Amin Rostami-Hodjegan","doi":"10.1007/s40262-024-01457-1","DOIUrl":"10.1007/s40262-024-01457-1","url":null,"abstract":"<p><strong>Background: </strong>Predicting metabolic drug-drug interactions (DDIs) via cytochrome P450 enzymes (CYP) is essential in drug development, but controversy has reemerged recently about whether in vitro-in vivo extrapolation (IVIVE) using static models can replace dynamic models for some regulatory filings and label recommendations.</p><p><strong>Objective: </strong>The aim of this study was to determine if static and dynamic models are equivalent for the quantitative prediction of metabolic DDIs arising from competitive CYP inhibition.</p><p><strong>Methods: </strong>Drug parameter spaces were varied to simulate 30,000 DDIs between hypothetical substrates and inhibitors of CYP3A4. Predicted area under the plasma concentration-time profile ratios for substrates (AUCr = AUC<sub>(presence of precipitant)</sub>/AUC<sub>(absence of precipitant)</sub>) were compared between dynamic simulations (Simcyp<sup>®</sup> V21) and corresponding static calculations, giving an inter-model discrepancy ratio (IMDR = AUCr<sub>dynamic</sub>/AUCr<sub>static</sub>). Dynamic simulations were conducted using a 'population' representative and a 'vulnerable patient' representative with maximal concentration (C<sub>max</sub>) or average steady-state concentration (C<sub>avg,ss</sub>) as the inhibitor driver concentrations. IMDRs outside the interval 0.8-1.25 were defined as discrepancy between models.</p><p><strong>Results: </strong>The highest rate of IMDR <0.8 and IMDR >1.25 discrepancies in the 'population' representative was 85.9% and 3.1%, respectively, when using C<sub>avg,ss</sub> as the inhibitor driver concentration. Using the 'vulnerable patient' representative showed the highest rate of IMDR >1.25 discrepancies at 37.8%.</p><p><strong>Conclusion: </strong>Static models are not equivalent to dynamic models for predicting metabolic DDIs via competitive CYP inhibition across diverse drug parameter spaces, particularly for vulnerable patients. Caution is warranted in drug development if static IVIVE approaches are used alone to evaluate metabolic DDI risks.</p>","PeriodicalId":10405,"journal":{"name":"Clinical Pharmacokinetics","volume":" ","pages":"155-170"},"PeriodicalIF":4.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11762507/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142799569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Population Pharmacokinetic Analysis of Tucatinib in Healthy Participants and Patients with Breast Cancer or Colorectal Cancer. 更正:图卡替尼在健康参与者和乳腺癌或结直肠癌患者中的群体药代动力学分析。
IF 4.6 2区 医学
Clinical Pharmacokinetics Pub Date : 2025-01-01 DOI: 10.1007/s40262-024-01458-0
Daping Zhang, Adekemi Taylor, Jie Janet Zhao, Christopher J Endres, Ariel Topletz-Erickson
{"title":"Correction: Population Pharmacokinetic Analysis of Tucatinib in Healthy Participants and Patients with Breast Cancer or Colorectal Cancer.","authors":"Daping Zhang, Adekemi Taylor, Jie Janet Zhao, Christopher J Endres, Ariel Topletz-Erickson","doi":"10.1007/s40262-024-01458-0","DOIUrl":"10.1007/s40262-024-01458-0","url":null,"abstract":"","PeriodicalId":10405,"journal":{"name":"Clinical Pharmacokinetics","volume":" ","pages":"171-172"},"PeriodicalIF":4.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11762418/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142806287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Clinical Pharmacokinetics of Psilocin After Psilocybin Administration: A Systematic Review and Post-Hoc Analysis. 裸盖菇素给药后裸盖菇素的临床药代动力学:系统综述和事后分析。
IF 4.6 2区 医学
Clinical Pharmacokinetics Pub Date : 2025-01-01 Epub Date: 2025-01-15 DOI: 10.1007/s40262-024-01454-4
Marije E Otto, Katelijne V van der Heijden, Jan W Schoones, Michiel J van Esdonk, Laura G J M Borghans, Gabriel E Jacobs, J G Coen van Hasselt
{"title":"Clinical Pharmacokinetics of Psilocin After Psilocybin Administration: A Systematic Review and Post-Hoc Analysis.","authors":"Marije E Otto, Katelijne V van der Heijden, Jan W Schoones, Michiel J van Esdonk, Laura G J M Borghans, Gabriel E Jacobs, J G Coen van Hasselt","doi":"10.1007/s40262-024-01454-4","DOIUrl":"10.1007/s40262-024-01454-4","url":null,"abstract":"<p><strong>Background and objective: </strong>Psilocybin is currently being extensively studied as a potential therapeutic agent for multiple psychiatric disorders. Here, a systematic literature review of all published pharmacokinetic data on the pharmacologically active metabolite of psilocybin, psilocin, is presented.</p><p><strong>Methods: </strong>The review includes clinical studies that reported pharmacokinetic data and/or parameters after psilocybin administration in humans. In addition, raw pharmacokinetic data from these studies was requested and/or extracted to further compare results across studies.</p><p><strong>Results: </strong>In total, 309 publications were identified, of which 19 publications were ultimately included, which covered 12 unique clinical datasets. Except for one study that investigated intravenous psilocybin, all included studies administered psilocybin orally. Psilocybin acts as a pro-drug and is rapidly absorbed and transformed to psilocin after oral administration. In the majority of studies, unconjugated psilocin was measured while some also measured conjugated and total concentrations. Psilocin's biphasic concentration-time profiles demonstrates fast and extensive disposition with an apparent distribution volume of 505-1267 L and a terminal half-life of 1.23-4.72 h. Only 1.5-3.4% of the dose is excreted as psilocin in urine. Psilocin is mainly transformed to 4-hydroxyindole-3-acetic acid and in less amounts to conjugated psilocin, where 4-hydroxyindole-3-acetic acid formation may occur prior to systemic psilocin absorption. Information on the absolute bioavailability of psilocin was limited, and estimated at 55% in one study. No covariates nor food effects have been reported, based on four studies with known fasting status.</p><p><strong>Conclusions: </strong>Overall, we found the pharmacokinetic parameters of psilocin to be consistent between studies. This review may guide the further clinical development of psilocybin-based therapies.</p>","PeriodicalId":10405,"journal":{"name":"Clinical Pharmacokinetics","volume":" ","pages":"53-66"},"PeriodicalIF":4.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11762572/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142982611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Echinocandins Pharmacokinetics: A Comprehensive Review of Micafungin, Caspofungin, Anidulafungin, and Rezafungin Population Pharmacokinetic Models and Dose Optimization in Special Populations. 棘白菌素的药代动力学:Micafungin、Caspofungin、Anidulafungin和Rezafungin在特殊人群中的药代动力学模型和剂量优化综述。
IF 4.6 2区 医学
Clinical Pharmacokinetics Pub Date : 2025-01-01 Epub Date: 2024-12-21 DOI: 10.1007/s40262-024-01461-5
Marta Albanell-Fernández
{"title":"Echinocandins Pharmacokinetics: A Comprehensive Review of Micafungin, Caspofungin, Anidulafungin, and Rezafungin Population Pharmacokinetic Models and Dose Optimization in Special Populations.","authors":"Marta Albanell-Fernández","doi":"10.1007/s40262-024-01461-5","DOIUrl":"10.1007/s40262-024-01461-5","url":null,"abstract":"<p><p>In recent years, many population pharmacokinetic (popPK) models have been developed for echinocandins to better understand the pharmacokinetics (PK) of these antifungals. This comprehensive review aimed to summarize popPK models of echinocandins (micafungin, caspofungin, anidulafungin, and rezafungin), by focusing on dosage optimization to maximize the probability of attaining the PK/PD target proposed in special populations. A search in PubMed, Embase, Web of Science, and Scopus, supplemented by the bibliography of relevant articles, was conducted from inception to March 2024, including both observational and prospective trials. A total of 1126 articles were identified, 47 of them were included in the review (22 for micafungin, 13 for caspofungin, 9 for anidulafungin, and 3 for rezafungin). A two-compartment model was more frequently used to describe the PK parameters of echinocandin (78.7% of developed models), although more complex structural models with three and four compartments have also been developed. The covariates to estimate the PK parameters such as clearance (CL) and volume of distribution (V<sub>d</sub>) differed between models. Weight total (WT) was the most frequently reported to be a significant predictor for both parameters, especially for estimating the CL in pediatrics. The PD parameter most widely reported assessing the drug exposure-efficacy relationship was the area under the concentration-time curve to minimum inhibitory concentration (MIC) ratio (AUC<sub>0-24</sub>/MIC) with different targets proposed for each echinocandin. In certain populations such as patients that are critically ill, obese, receiving extracorporeal membrane oxygenation (ECMO) and/or continuous renal replacement therapy (CRRT), or pediatric patients and/or patients with cancer or that are immunocompromised, the fixed dosing strategies recommended in the drug prescribing information may not reach the PK/PD target. For these populations, different strategies have been proposed, such as a dosing regimen based on body weight or increasing the loading and/or maintenance dose. Despite echinocandins' favorable safety profile and predictable PK, certain groups at risk of suboptimal drug exposure can benefit from therapeutic drug monitoring (TDM) to prevent clinical failures. Numerous popPK models of echinocandins have been developed. However, an external validation of the suggested dosing regimens in conjunction with an analysis of population subgroups should be conducted before implementing a popPK model in clinical practice.</p>","PeriodicalId":10405,"journal":{"name":"Clinical Pharmacokinetics","volume":" ","pages":"27-52"},"PeriodicalIF":4.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11762474/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142871597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of the Effect of Risankizumab on the Pharmacokinetics of Cytochrome P450 Substrates in Patients with Moderately to Severely Active Ulcerative Colitis or Crohn's Disease. 评估利桑单抗对中度至重度活动性溃疡性结肠炎或克罗恩病患者细胞色素P450底物药代动力学的影响
IF 4.6 2区 医学
Clinical Pharmacokinetics Pub Date : 2025-01-01 Epub Date: 2024-12-21 DOI: 10.1007/s40262-024-01462-4
Ronilda D'Cunha, Tofial Azam, Jasmina Kalabic, Toni Anschutz, Adi Lahat, Yinuo Pang
{"title":"Evaluation of the Effect of Risankizumab on the Pharmacokinetics of Cytochrome P450 Substrates in Patients with Moderately to Severely Active Ulcerative Colitis or Crohn's Disease.","authors":"Ronilda D'Cunha, Tofial Azam, Jasmina Kalabic, Toni Anschutz, Adi Lahat, Yinuo Pang","doi":"10.1007/s40262-024-01462-4","DOIUrl":"10.1007/s40262-024-01462-4","url":null,"abstract":"<p><strong>Background and objective: </strong>The objective of this study was to characterize the effects of risankizumab on the pharmacokinetics of cytochrome P450 (CYP) 1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A substrates in patients with moderately to severely active Crohn's disease (CD) or ulcerative colitis (UC) using a cocktail approach.</p><p><strong>Methods: </strong>Patients with CD or UC (n = 20) received single doses of probe substrates for CYP1A2 (caffeine 100 mg), CYP2C9 (warfarin 10 mg), CYP2C19 (omeprazole 20 mg), CYP2D6 (metoprolol 50 mg), and CYP3A (midazolam 2 mg) before and after intravenous infusions of risankizumab 1800 mg once every 4 weeks for four doses. Serial blood samples were collected for determination of concentrations of the CYP probe drugs and metabolites with and without risankizumab. Trough samples for risankizumab were collected at sparse timepoints.</p><p><strong>Results: </strong>The point estimates and 90% confidence intervals for maximum plasma concentration (C<sub>max</sub>) and the area under the plasma concentration-time curve from time zero to infinity (AUC<sub>inf</sub>) ratios for the CYP probe substrates administered with risankizumab versus without risankizumab were mostly within the 0.8-1.25 equivalence bounds, except for omeprazole and caffeine. While the upper 90% CI for caffeine AUC<sub>inf</sub> exceeded 1.25, the point estimate was a modest 1.13 and the C<sub>max</sub> ratio was well within 0.8-1.25. For omeprazole, while the lower bound of the 90% CI for AUC<sub>t</sub> (0.715) and AUC<sub>inf</sub> (0.624) extended slightly below the default equivalence limit, the exposures of its metabolite, 5-hydroxy-omeprazole, formed via CYP2C19, were comparable before and after risankizumab treatment, indicating a limited impact of risankizumab. No new safety issues were identified in this study.</p><p><strong>Conclusion: </strong>The totality of data indicated a lack of clinically relevant impact of risankizumab on the evaluated CYP enzymes in patients with CD/UC.</p><p><strong>Clinicaltrials: </strong>GOV: NCT04254783.</p>","PeriodicalId":10405,"journal":{"name":"Clinical Pharmacokinetics","volume":" ","pages":"143-154"},"PeriodicalIF":4.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11762434/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142871599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Relative Forgiveness of Different Allopurinol Implementation Patterns in People with Gout and their Impact on Clinical Outcomes: a Simulation Study. 痛风患者不同别嘌呤醇应用模式的相对宽恕及其对临床结果的影响:一项模拟研究。
IF 4.6 2区 医学
Clinical Pharmacokinetics Pub Date : 2025-01-01 Epub Date: 2024-12-18 DOI: 10.1007/s40262-024-01467-z
Melanie White-Koning, Daniel F B Wright, Dyfrig A Hughes, Toni J F Michael, Matthew J Coleshill, Parisa Aslani, Richard O Day, Sophie L Stocker
{"title":"Relative Forgiveness of Different Allopurinol Implementation Patterns in People with Gout and their Impact on Clinical Outcomes: a Simulation Study.","authors":"Melanie White-Koning, Daniel F B Wright, Dyfrig A Hughes, Toni J F Michael, Matthew J Coleshill, Parisa Aslani, Richard O Day, Sophie L Stocker","doi":"10.1007/s40262-024-01467-z","DOIUrl":"10.1007/s40262-024-01467-z","url":null,"abstract":"<p><strong>Background and objective: </strong>Adherence to urate-lowering therapy among people with gout is poor, so it is important to understand which day-to-day medication-taking ('implementation') patterns are most likely to lead to suboptimal serum urate concentrations and worsen clinical outcomes. This study aimed to (1) determine the relative forgiveness (RF) of allopurinol with hypothetical and real-life implementation patterns in people with gout, (2) explore the use of RF as a means of identifying suboptimal implementation patterns, (3) assess the impact of suboptimal implementation patterns on clinical outcomes.</p><p><strong>Methods: </strong>A simulation study was conducted using a pharmacokinetic-pharmacodynamic model for allopurinol and serum urate to determine the RF of allopurinol implementation patterns.</p><p><strong>Results: </strong>With 100% ('perfect') implementation, the probability of adequate urate control (> 90% of days with urate < 0.36 mmol/L over 360 days) for a 300 mg dose of allopurinol was 0.549. Simulations based on real-life individual implementation patterns over a year yielded a median RF of 0.51, indicating that half of the patterns studied were at least 50% less likely to achieve adequate urate control than perfect implementation.</p><p><strong>Conclusion: </strong>Our study provides evidence that missing one or two doses of allopurinol, even repeatedly over a year, does not significantly impact serum urate target achievement or clinical outcomes. However, people who take repeated drug holidays of more than 3 days in a row (followed by less than 15 consecutive days of dosing) are less than 0.3 times as likely (at least 70% less likely) to achieve adequate urate control than those with perfect implementation and may see an increase in the frequency of gout flares.</p>","PeriodicalId":10405,"journal":{"name":"Clinical Pharmacokinetics","volume":" ","pages":"93-105"},"PeriodicalIF":4.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11762574/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142845919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Review of Vancomycin, Gentamicin, and Amikacin Population Pharmacokinetic Models in Neonates and Infants. 万古霉素、庆大霉素和阿米卡星在新生儿和婴儿群体药代动力学模型的综述。
IF 4.6 2区 医学
Clinical Pharmacokinetics Pub Date : 2025-01-01 Epub Date: 2025-01-16 DOI: 10.1007/s40262-024-01459-z
Marta Albanell-Fernández, Montse Rodríguez-Reyes, Carla Bastida, Dolors Soy
{"title":"A Review of Vancomycin, Gentamicin, and Amikacin Population Pharmacokinetic Models in Neonates and Infants.","authors":"Marta Albanell-Fernández, Montse Rodríguez-Reyes, Carla Bastida, Dolors Soy","doi":"10.1007/s40262-024-01459-z","DOIUrl":"10.1007/s40262-024-01459-z","url":null,"abstract":"<p><p>Population pharmacokinetic (popPK) models are an essential tool when implementing therapeutic drug monitoring (TDM) and to overcome dosing challenges in neonates in clinical practice. Since vancomycin, gentamicin, and amikacin are among the most prescribed antibiotics for the neonatal population, we aimed to characterize the popPK models of these antibiotics and the covariates that may influence the pharmacokinetic parameters in neonates and infants with no previous pathologies. We searched the PubMed, Embase, Web of Science, and Scopus databases and the bibliographies of relevant articles from inception to the beginning of February 2024. The search identified 2064 articles, of which 68 met the inclusion criteria (34 for vancomycin, 21 for gentamicin, 13 for amikacin). A one-compartment popPK model was more frequently used to describe the pharmacokinetics of the three antibiotics (91.2% vancomycin, 76.9% gentamicin, 57.1% amikacin). Pharmacokinetic parameter (mean ± standard deviation) values calculated for a \"typical\" neonate weighing 3 kg were as follows: clearance (CL) 0.34 ± 0.80 L/h for vancomycin, 0.27 ± 0.49 L/h for gentamicin, and 0.19 ± 0.07 L/h for amikacin; volume of distribution (V<sub>d</sub>): 1.75 ± 0.65 L for vancomycin, 1.54 ± 0.53 L for gentamicin, and 1.67 ± 0.27 L for amikacin for one-compartment models. Total body weight, postmenstrual age, and serum creatinine were common predictors (covariates) for describing the variability in CL, whereas only total body weight predominated for V<sub>d</sub>. A single universal popPK model for each of the antibiotics reviewed cannot be implemented in the neonatal population because of the significant variability between them. Body weight, renal function, and postmenstrual age are important predictors of CL in the three antibiotics, and total body weight for V<sub>d</sub>. TDM represents an essential tool in this population, not only to avoid toxicity but to attain the desired pharmacokinetic/pharmacodynamic index. The characteristics of the neonatal population, coupled with the lack of prospective studies and external validation of most models, indicate a need to continue investigating the pharmacokinetics of these antibiotics in neonates.</p>","PeriodicalId":10405,"journal":{"name":"Clinical Pharmacokinetics","volume":" ","pages":"1-25"},"PeriodicalIF":4.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11762427/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143001285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信