Clean-soil Air Water最新文献

筛选
英文 中文
Issue Information: Clean Soil Air Water. 6/2024 问题信息:清洁土壤、空气和水。6/2024
IF 1.7 4区 环境科学与生态学
Clean-soil Air Water Pub Date : 2024-06-12 DOI: 10.1002/clen.202470061
{"title":"Issue Information: Clean Soil Air Water. 6/2024","authors":"","doi":"10.1002/clen.202470061","DOIUrl":"https://doi.org/10.1002/clen.202470061","url":null,"abstract":"","PeriodicalId":10306,"journal":{"name":"Clean-soil Air Water","volume":"52 6","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/clen.202470061","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141308777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chemical characterization of submicron particulate matter (PM1) and its source apportionment using positive matrix factorization 亚微米颗粒物(PM1)的化学特征及其利用正矩阵因式分解法进行的来源分配
IF 1.5 4区 环境科学与生态学
Clean-soil Air Water Pub Date : 2024-06-04 DOI: 10.1002/clen.202300157
Charu Jhamaria, Shivani Sharma, Manish Yadav, Suresh Tiwari, Namrata Singh
{"title":"Chemical characterization of submicron particulate matter (PM1) and its source apportionment using positive matrix factorization","authors":"Charu Jhamaria,&nbsp;Shivani Sharma,&nbsp;Manish Yadav,&nbsp;Suresh Tiwari,&nbsp;Namrata Singh","doi":"10.1002/clen.202300157","DOIUrl":"10.1002/clen.202300157","url":null,"abstract":"<p>The present study was conducted to address four key questions: (i) What are the levels of submicron particulate matter at the study area?, (ii) which are the major contributing sources of these particles?, and (iii) is there any seasonal changes in the levels of pollutants at the study site? Thus, the study was conducted at an urban residential site of Jaipur City, India, to determine the elemental and ionic composition of toxic elements associated with PM<sub>1</sub> using inductively coupled plasma optical emission spectroscopy and ion chromatography to reveal specific sources. Monitoring was done for a period of 8 months between October 2020 and May 2021 considering three seasons: winter (December–February), pre-monsoon (March–May), and post-monsoon (October–November). PM<sub>1</sub> samples were found to be highly enriched with Ag, Cd, B, Ni, and Zn. PM<sub>1</sub> mass concentrations were observed to be greater in winter (104.13 ± 30.16 µg m<sup>−3</sup>) and lower in the pre-monsoon season (83.62 ± 19.40 µg m<sup>−3</sup>). Ion concentrations (Cl<sup>−</sup>, NO<sub>3</sub><sup>2−</sup>, and SO<sub>4</sub><sup>2−</sup>) followed a similar pattern to PM<sub>1</sub> concentrations. Source apportionment by positive matrix factorization at the study site revealed six major sources of pollutants (soil dust, agro-based industry, automobile industry, salt aerosols, industrial activities, and biomass burning).</p>","PeriodicalId":10306,"journal":{"name":"Clean-soil Air Water","volume":"52 7","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141268115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scrutinizing the chemical and morphological alterations of microfibers released from household washing machines under varying temperature conditions 研究家用洗衣机在不同温度条件下释放的微纤维的化学和形态变化
IF 1.5 4区 环境科学与生态学
Clean-soil Air Water Pub Date : 2024-06-03 DOI: 10.1002/clen.202300285
Dinesh Parida, Rimjhim Sangtani, Regina Nogueira, Kiran Bala
{"title":"Scrutinizing the chemical and morphological alterations of microfibers released from household washing machines under varying temperature conditions","authors":"Dinesh Parida,&nbsp;Rimjhim Sangtani,&nbsp;Regina Nogueira,&nbsp;Kiran Bala","doi":"10.1002/clen.202300285","DOIUrl":"10.1002/clen.202300285","url":null,"abstract":"<p>To fulfill a huge demand that is arising globally due to the skyrocketing population, the textile industry is shifting toward cheaper, sturdier, enduring fabrics. Apparently, innovations are turning out to be banes instead of boons, as they are generating a lot of waste, leading to the destruction of the environment. Microfibers are one such example of an emerging environmental contaminant with several irreversible, health, and ecosystem repercussions. This study deals with the effects of temperature on the generation of microfibrils from washing machines. Three different temperatures ranging from lower to higher were considered. The net weight of microfibers released from higher temperatures was found to be 1132.5 ± 41.3 mg/20 L using gravimetric analysis. The fibers released from the higher temperature, that is, 60°C, were 2.7 and 1.6 times higher than those released from colder temperatures, 30 and 40°C, respectively. The length and diameter of these microfibers were in the microplastic size range. The polyester fiber was found to be released in higher amounts after identification with Fourier transform infrared and Raman spectroscopy. The results of this study can help consumers implement sustainable behavior and regulations to lessen the release of microfibers from washing household textiles.</p>","PeriodicalId":10306,"journal":{"name":"Clean-soil Air Water","volume":"52 12","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141271333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Subsurface flow model for estimating 2D wetting pattern in drip irrigation 用于估算滴灌二维湿润模式的地下流动模型
IF 1.5 4区 环境科学与生态学
Clean-soil Air Water Pub Date : 2024-05-22 DOI: 10.1002/clen.202300236
Kowkuntla Rama Krishna Reddy, Vivekanand Singh
{"title":"Subsurface flow model for estimating 2D wetting pattern in drip irrigation","authors":"Kowkuntla Rama Krishna Reddy,&nbsp;Vivekanand Singh","doi":"10.1002/clen.202300236","DOIUrl":"10.1002/clen.202300236","url":null,"abstract":"<p>Numerical model using 2D Richard’s equation in cylindrical polar coordinate system was developed to assess the soil wetting patterns in a drip irrigation system. A fully implicit finite-difference scheme was used to solve equations with suitable initial and boundary conditions. The developed model was validated with an experimental result available in the literature, which shows a high level of concordance with low values of RMSE and R2 greater than 0.93 for all discharge rates. Furthermore, the versatility and applicability of the model were demonstrated for complex subsurface conditions considering homogeneous and heterogeneous soil profiles. Water ponding on the surface was observed in clay loam soil, contrasting with deep percolation in sandy loam soil. This underscores the significance of adjusting both discharge rate and irrigation frequency in accordance with prevailing soil conditions.</p>","PeriodicalId":10306,"journal":{"name":"Clean-soil Air Water","volume":"53 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141112193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Determination of benzophenone derivatives in wastewater by GC–MS/MS combined with in-port derivatization 利用气相色谱-质谱/质谱结合端口衍生法测定废水中的二苯甲酮衍生物
IF 1.5 4区 环境科学与生态学
Clean-soil Air Water Pub Date : 2024-05-20 DOI: 10.1002/clen.202300145
Serenay Ceren Tüzün, Ilgi Karapinar, Cemile Yücel, Fatma Nil Ertaş, Hasan Ertaş
{"title":"Determination of benzophenone derivatives in wastewater by GC–MS/MS combined with in-port derivatization","authors":"Serenay Ceren Tüzün,&nbsp;Ilgi Karapinar,&nbsp;Cemile Yücel,&nbsp;Fatma Nil Ertaş,&nbsp;Hasan Ertaş","doi":"10.1002/clen.202300145","DOIUrl":"10.1002/clen.202300145","url":null,"abstract":"<p>The analysis of UV filters (UVFs) in water has become increasingly important due to their adverse effects on aquatic organisms and humans. This study describes a method for the determination of benzophenone derivatives UVF in wastewater samples. The selected UVFs are 2-hydroxy-4-methoxybenzophenone (BP-3), 2,4-dihydroxybenzophenone (BP-1), 4-hydroxybenzophenone (4HB), 2,2′-dihydroxy-4-methoxybenzophenone (DHMB) and lastly, 4,4′-dihydroxybenzophenone (4DHB). The method includes solid-phase extraction (SPE) of analytes from wastewater followed by on-line derivatization with bis(trimethylsilyl)trifluoroacetamide (BSTFA) and analysis with GC-MS/MS. Method validation studies resulted in good recoveries (86–112%), relative standard deviation RSD = 0.8 and 7.3%, the limits of detection LODs = 1.00–10.8 ng/L, and the limits of quantification LOQs = 3.00–32.3 ng/L. The method was successfully applied to domestic wastewater samples collected from influent and effluent of touristic hotels’ biological wastewater treatment plants. BP-3 (24–1765 ng/L), BP-1 (8–703 ng/L), 4HB (26–96 ng/L), and 4DHB (20–22 ng/L) were the common benzophenone derivatives in the influent wastewater while effluent contained mainly BP-1 (8–32 ng/L), 4HB (12–57 ng/L) and 4DHB (20–102 ng/L). These results indicate that BP-3 and BP-1 are biodegraded in the treatment processes. However, 4HB and 4DHB are resistant to degradation and they are the main benzophenone metabolites discharged to receiving media.</p>","PeriodicalId":10306,"journal":{"name":"Clean-soil Air Water","volume":"52 7","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/clen.202300145","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141121526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Issue Information: Clean Soil Air Water. 5/2024 问题信息:清洁土壤、空气和水。5/2024
IF 1.7 4区 环境科学与生态学
Clean-soil Air Water Pub Date : 2024-05-10 DOI: 10.1002/clen.202470051
{"title":"Issue Information: Clean Soil Air Water. 5/2024","authors":"","doi":"10.1002/clen.202470051","DOIUrl":"https://doi.org/10.1002/clen.202470051","url":null,"abstract":"","PeriodicalId":10306,"journal":{"name":"Clean-soil Air Water","volume":"52 5","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/clen.202470051","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140906967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Occurrence, fate, transport, and removal technologies of emerging contaminants: A review on recent advances and future perspectives 新兴污染物的发生、归宿、迁移和清除技术:最新进展与未来展望综述
IF 1.5 4区 环境科学与生态学
Clean-soil Air Water Pub Date : 2024-05-09 DOI: 10.1002/clen.202300259
Rahul Ghosh, Divyesh Parde, Soumyadeep Bhaduri, Praveen Rajpurohit, Manaswini Behera
{"title":"Occurrence, fate, transport, and removal technologies of emerging contaminants: A review on recent advances and future perspectives","authors":"Rahul Ghosh,&nbsp;Divyesh Parde,&nbsp;Soumyadeep Bhaduri,&nbsp;Praveen Rajpurohit,&nbsp;Manaswini Behera","doi":"10.1002/clen.202300259","DOIUrl":"10.1002/clen.202300259","url":null,"abstract":"<p>Emerging contaminants (ECs) are a category of relatively newly identified chemicals lacking regulatory status and generally of synthetic origin. ECs encompass a range of substances, including pharmaceuticals, antibiotics, antidiabetics, pesticides, personal care products (PCPs), and endocrine-disrupting chemicals. ECs are frequently found in surface water, groundwater, and wastewater. Wastewater treatment plants (WWTPs) are often identified as sources of these chemicals. ECs enter wastewater through improper disposal or usage of consumer goods, agricultural runoff, toxic spillage, and prescription drug excretion in urine and feces, as the human body metabolizes a fraction of administered drugs. The presence of ECs in aquatic environments poses a significant threat, as they can potentially harm both the ecosystem and humans, even at low concentrations. For a comprehensive understanding of the impacts of ECs, it is essential for researchers to investigate the occurrence, sources, fate, and transport of these substances in wastewater. This review investigates the origins and ultimate fate of these ECs, examining their interactions with the surrounding aquatic environments. It aims to provide a comprehensive understanding of the characteristics and behaviors of ECs through an in-depth analysis. This review discusses treatment techniques and processes and examines potential pathways for future advancement.</p>","PeriodicalId":10306,"journal":{"name":"Clean-soil Air Water","volume":"52 12","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140935464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Halophiles and their adaptations: A comprehensive review on recent progress and prospects in biodesalination applications 嗜卤生物及其适应性:生物脱盐应用的最新进展和前景综述
IF 1.5 4区 环境科学与生态学
Clean-soil Air Water Pub Date : 2024-05-03 DOI: 10.1002/clen.202300260
Radhakrishnan Linekha, Jose Gnanaleela Aswin Jeno, Krishnan Abirami, Balakrishnan Yamunadevi, Ekambaram Nakkeeran
{"title":"Halophiles and their adaptations: A comprehensive review on recent progress and prospects in biodesalination applications","authors":"Radhakrishnan Linekha,&nbsp;Jose Gnanaleela Aswin Jeno,&nbsp;Krishnan Abirami,&nbsp;Balakrishnan Yamunadevi,&nbsp;Ekambaram Nakkeeran","doi":"10.1002/clen.202300260","DOIUrl":"10.1002/clen.202300260","url":null,"abstract":"<p>Worldwide climate change, rising population, and industrialization have raised the global demand for freshwater. Desalinating brackish water has become a sustainable technology for drinking and agriculture to overcome global water scarcity. Thriving biodesalination technology has become more attractive and eco-friendly than the present physicochemical desalination methods, which are expensive and energy-intensive. Researchers are exploring the bioutilization of nature's potential for desalination using halophiles like haloarchaea, halobacteria, halophytic algae, and plants. Biomimetic desalination membranes have been developed, inspired by the desalination mechanism in animals. This comprehensive review explores recent advancements and potential applications of halophiles in biodesalination to exploit them effectively. It provides an overview of the opportunities and challenges associated with harnessing halophiles for the removal of salts from brackish and seawater sources. This review also focuses on insights into biomolecules produced by the halophilic microorganisms and halophytes in the desalination process. Understanding the mechanism of action of these biomolecules will edify the effective unexplored research areas in biomimicry and bioutilization to overcome the existing limitations in water treatment.</p>","PeriodicalId":10306,"journal":{"name":"Clean-soil Air Water","volume":"52 12","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140831582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metal organic framework composite based on CuBTC/SPION for application in methylene blue adsorption 基于 CuBTC/SPION 的金属有机框架复合材料在亚甲基蓝吸附中的应用
IF 1.7 4区 环境科学与生态学
Clean-soil Air Water Pub Date : 2024-05-02 DOI: 10.1002/clen.202300018
Thu Phuong Nguyen, Thi Thom Nguyen, Thi Nam Pham, Thi Hai Do, Magdalena Osial, Minh Khoi Le, Hong Nam Nguyen, Phuong Thu Le, Thi Mai Thanh Dinh
{"title":"Metal organic framework composite based on CuBTC/SPION for application in methylene blue adsorption","authors":"Thu Phuong Nguyen,&nbsp;Thi Thom Nguyen,&nbsp;Thi Nam Pham,&nbsp;Thi Hai Do,&nbsp;Magdalena Osial,&nbsp;Minh Khoi Le,&nbsp;Hong Nam Nguyen,&nbsp;Phuong Thu Le,&nbsp;Thi Mai Thanh Dinh","doi":"10.1002/clen.202300018","DOIUrl":"10.1002/clen.202300018","url":null,"abstract":"<p>In this work, a composite (CuBTC/superparamagnetic iron oxide nanoparticles [SPION]) based on copper, benzene-1,3,5-tricarboxylic acid (CuBTC) and SPION was synthesized by electrochemical method for the magnetic separation of methylene blue (MB) from aqueous solutions. The synthesis of the proposed composite was carried out under various experimental conditions from 1.4 to 5.4 V for 1–5 h and subsequently studied using different techniques. Scanning electron microscopy showed a granular structure, whereas Brunauer–Emmett–Teller results revealed a well-developed surface area of around 182 m<sup>2</sup> g<sup>−1</sup>. Fourier transform infrared confirmed the presence of functional groups characteristic to CuBTC and Fe<sub>3</sub>O<sub>4</sub>, whereas X-ray diffraction revealed the phase structure of CuBTC 1D, CuBTC 3D, and Fe<sub>3</sub>O<sub>4</sub> in the obtained composite. Based on the experimental results, the sample synthesized under a potential of 1.4 V for 5 h was selected for MB adsorption studies in the function of adsorbent mass, contact time, solution pH, ionic strength, initial concentration, and temperature. The maximum adsorption capacity was 681 mg g<sup>−1</sup>, and the adsorption undergoes the Redlich–Peterson and Sips isotherm model. The results obtained for CuBTC/SPION indicate that the nanocomposite is a promising adsorbent for removing MB in synthetic dye water and wastewater.</p>","PeriodicalId":10306,"journal":{"name":"Clean-soil Air Water","volume":"52 5","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140831809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessment of air quality benefits of vegetation in an urban-industrial region of India by integrating air monitoring with i-Tree Eco model 通过将空气监测与 i-Tree Eco 模型相结合,评估植被对印度城市工业区空气质量的益处
IF 1.5 4区 环境科学与生态学
Clean-soil Air Water Pub Date : 2024-05-02 DOI: 10.1002/clen.202300198
Mallika Vashist, Thangamani Vijaya Kumar, Santosh Kumar Singh
{"title":"Assessment of air quality benefits of vegetation in an urban-industrial region of India by integrating air monitoring with i-Tree Eco model","authors":"Mallika Vashist,&nbsp;Thangamani Vijaya Kumar,&nbsp;Santosh Kumar Singh","doi":"10.1002/clen.202300198","DOIUrl":"10.1002/clen.202300198","url":null,"abstract":"<p>In the last few years, urban trees have emerged as an effective nature-based solution to mitigate increasing air pollutant levels due to urbanization and industrialization. This study aims to assess the synergistic effect of urban trees on improving air quality by combining real-time PM<sub>2.5</sub> monitoring with the i-Tree Eco model. The monitoring was conducted during rush hours with high traffic volume and during non-rush hours, in both the tree alley and a non-tree road section within the industrial areas of the north-west region of the National Capital Territory of Delhi, India. The i-Tree Eco model was run using the diameter at breast height values of tree species present in the study area, and the PM<sub>2.5</sub> reduction ability of the trees was quantified. The results from both approaches indicated that urban trees can significantly reduce the traffic-fed PM<sub>2.5</sub> concentrations. Therefore, it is suggested that tree plantations be integrated into air pollution management strategies in urbanized regions with high traffic volumes. Although this study explores the initial link between trees and air quality in Delhi, further research incorporating local wind speed and direction measurements would provide a more comprehensive understanding of how trees influence air quality in any highly polluted urban setting.</p>","PeriodicalId":10306,"journal":{"name":"Clean-soil Air Water","volume":"52 7","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140831633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信