{"title":"Short-Term Benefits of Tillage and Agronomic Biofortification for Soybean–Wheat Cropping in Central India","authors":"Raghavendra Nargund, Rakesh Kumar Verma, Aketi Ramesh, Mahaveer Prasad Sharma, Hanamant Mudakappa Halli, Prabhu Govindasamy","doi":"10.1002/clen.202300300","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In a changing climate, conservation tillage and agronomic biofortification are essential for enhancing crop yield, nutritional security, carbon stocks, and soil quality. Consequently, a field study was conducted in central India to assess the short-term (4 years) effects of crop establishment techniques (CETs) and agronomic biofortification methods (ABMs) on soil health indicators, grain yield, and quality in the soybean–wheat cropping system. The experiment followed a split-plot design with two CETs in the main plots (permanent broad bed furrow, PBBF, and conventional tillage, CT) and eight ABMs, each with three replications. The results indicated that PBBF and ABMs (seed inoculation with the microbial strains MDSR 14 + MDSR 34, and soil and foliar application of Zn+Fe) improved soil carbon stock (by 49.6% and 52.4%), available nitrogen, phosphorus, potassium, available Zn (by 30.0%), and Fe (by 21.9%) after the fourth year of the study. Similarly, PBBF and microbial inoculation increased soil enzyme activities (dehydrogenase, acid phosphatase, and β-glucosidase), substrate-induced respiration, and microbial biomass carbon content. As a result, a higher soybean equivalent yield (5.59% higher in PBBF and 14.2% higher with foliar spray of Zn+Fe) and seed quality attributes (crude protein yield, grain Zn, and Fe) were observed in PBBF and the foliar spray of Zn and Fe treatments compared to CT and control, respectively. Overall, adopting the short-term PBBF system, microbial inoculation, and soil and foliar application of Zn and Fe improved rhizosphere biochemical properties, yield, and seed quality in the soybean–wheat system.</p>\n </div>","PeriodicalId":10306,"journal":{"name":"Clean-soil Air Water","volume":"52 11","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clean-soil Air Water","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/clen.202300300","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In a changing climate, conservation tillage and agronomic biofortification are essential for enhancing crop yield, nutritional security, carbon stocks, and soil quality. Consequently, a field study was conducted in central India to assess the short-term (4 years) effects of crop establishment techniques (CETs) and agronomic biofortification methods (ABMs) on soil health indicators, grain yield, and quality in the soybean–wheat cropping system. The experiment followed a split-plot design with two CETs in the main plots (permanent broad bed furrow, PBBF, and conventional tillage, CT) and eight ABMs, each with three replications. The results indicated that PBBF and ABMs (seed inoculation with the microbial strains MDSR 14 + MDSR 34, and soil and foliar application of Zn+Fe) improved soil carbon stock (by 49.6% and 52.4%), available nitrogen, phosphorus, potassium, available Zn (by 30.0%), and Fe (by 21.9%) after the fourth year of the study. Similarly, PBBF and microbial inoculation increased soil enzyme activities (dehydrogenase, acid phosphatase, and β-glucosidase), substrate-induced respiration, and microbial biomass carbon content. As a result, a higher soybean equivalent yield (5.59% higher in PBBF and 14.2% higher with foliar spray of Zn+Fe) and seed quality attributes (crude protein yield, grain Zn, and Fe) were observed in PBBF and the foliar spray of Zn and Fe treatments compared to CT and control, respectively. Overall, adopting the short-term PBBF system, microbial inoculation, and soil and foliar application of Zn and Fe improved rhizosphere biochemical properties, yield, and seed quality in the soybean–wheat system.
期刊介绍:
CLEAN covers all aspects of Sustainability and Environmental Safety. The journal focuses on organ/human--environment interactions giving interdisciplinary insights on a broad range of topics including air pollution, waste management, the water cycle, and environmental conservation. With a 2019 Journal Impact Factor of 1.603 (Journal Citation Reports (Clarivate Analytics, 2020), the journal publishes an attractive mixture of peer-reviewed scientific reviews, research papers, and short communications.
Papers dealing with environmental sustainability issues from such fields as agriculture, biological sciences, energy, food sciences, geography, geology, meteorology, nutrition, soil and water sciences, etc., are welcome.