Guo Xiaoying, Bao Yuanyuan, Li Wei, Zhao Siqin and Huang Chao
{"title":"Current research status on the structural properties and modification of LiFePO4 cathode materials","authors":"Guo Xiaoying, Bao Yuanyuan, Li Wei, Zhao Siqin and Huang Chao","doi":"10.1039/D4RE00263F","DOIUrl":"10.1039/D4RE00263F","url":null,"abstract":"<p >With the current global economy developing at a rapid pace, research into lithium-ion batteries has become a focal point in many major areas. Lithium iron phosphate, also known as LiFePO<small><sub>4</sub></small> or LFP, is one of the most promising cathode materials for commercial lithium batteries. Its advantages include low cost, environmental friendliness, long cycle life, good thermal stability, and more. Its high-rate charge–discharge capability is limited by its low electronic conductivity and lithium ion diffusion coefficient. Thus, this work describes the structural features of LiFePO<small><sub>4</sub></small> cathode materials, focuses on their modification (coating, ion doping, morphological control methods), and concludes by anticipating the direction of future research in this field.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 11","pages":" 2830-2845"},"PeriodicalIF":3.4,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142177885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Adrian Ioan Dudu, Csaba Paizs and Monica Ioana Toşa
{"title":"Optimization of reaction parameters for the synthesis of natural aroma esters by factorial design†","authors":"Adrian Ioan Dudu, Csaba Paizs and Monica Ioana Toşa","doi":"10.1039/D4RE00265B","DOIUrl":"10.1039/D4RE00265B","url":null,"abstract":"<p >In this study, the synthesis of aroma esters by the direct esterfication of carboxylic acids with aromatic alcohols mediated by lipase B from <em>Candida antarctica</em> encapsulated in a sol–gel matrix in a solvent-free system is presented. Vacuum was used in order to remove the resultant water. The reaction parameters were optimized by factorial design experiments considering four factors (acid excess, temperature, vacuum and time) on two levels. As a result, the conversions were significantly increased (for example, from an isolation yield of 49.4% to 94.3% for cinnamyl butyrate). A semi-preparative experiment was further set up for cinnamyl butyrate preparation. The green chemistry metrics, such as the <em>E</em>-factor of 4.76 and mass intensity of 6.04, demonstrated that the newly developed enzymatic process is suitable for industrial application based on green chemistry principles.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 11","pages":" 2994-3002"},"PeriodicalIF":3.4,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/re/d4re00265b?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142177850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Esai Daniel Lopez, Patricia Zhang Musacchio and Andrew R. Teixeira
{"title":"Wireless μLED packed beds for scalable continuous multiphasic photochemistry†","authors":"Esai Daniel Lopez, Patricia Zhang Musacchio and Andrew R. Teixeira","doi":"10.1039/D4RE00241E","DOIUrl":"10.1039/D4RE00241E","url":null,"abstract":"<p >Photochemical and photocatalytic reactions are a powerful emerging tool in the green synthesis of organic molecules. In contrast to thermochemical reactions, they promise greater energy efficiency, milder reaction conditions, and a decrease in the number of synthesis steps. Unfortunately, conventional batch photochemical systems are not inherently scalable, making translation to industrial applications challenging. Fundamentally, this is most clearly attributed to the penetration depth of light, as constrained by the Beer–Lambert relationship: as the size of the reactor is increased, the depth of light penetration into liquid medium decreases exponentially. Small-diameter plug flow reactors with external illumination have recently been employed industrially to 1) transition photochemistry from batch to continuous flow, and 2) overcome light penetration challenges by employing millimeter-scale optical paths; however these often present with substantial pressure drops and scalability challenges. In this work, a fixed bed reactor is packed with wireless μLEDs (μLED-PBR) and engineered to scale the oxidation of α-terpinene using a homogeneous rose-bengal photosensitizer. Utilizing μLEDs as packing allows for internal volumetrically scalable illumination from 250 or 500 μLEDs. Not only is the μLED packing efficient at delivering photons, but it also statically induces turbulence and mixing of the biphasic streams within the reactor. Unlike tubular plug flow reactors, the μLED-PBR design is volumetrically scalable. During operation, a co-current trickle flow regime was established with a 29 μm liquid film flowing over the μLEDs. In stark contrast to those typical in small channel tubular flow reactors, the packed bed experienced negligible hydrodynamic pressure drop penalties. The photochemical space time yield of the reactor normalized to the power consumption for the μLED-PBR was three orders of magnitude greater than other externally illuminated thin film flow reactors for the same chemistry: 1411 mmol W<small><sup>−1</sup></small> per day compared to 1.34 mmol W<small><sup>−1</sup></small> per day.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 11","pages":" 2963-2974"},"PeriodicalIF":3.4,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/re/d4re00241e?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142177851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pinaki Ranadive, Faiz Khan, Jessica O. Winter and Nicholas Brunelli
{"title":"Dual jet-mixing reactor for fully continuous synthesis of core@shell Au@Ag nanocomposites†","authors":"Pinaki Ranadive, Faiz Khan, Jessica O. Winter and Nicholas Brunelli","doi":"10.1039/D3RE00417A","DOIUrl":"10.1039/D3RE00417A","url":null,"abstract":"<p >The wide-scale production of nanomaterials would benefit from scalable synthetic methods. One class of promising nanomaterials consists of a core@shell structure in which one type of material is used for the core and a second material is grown on the surface to produce a shell. Although these materials are commonly realized in batch, core@shell structures have not yet been widely translated to scalable manufacturing processes. In this work, we investigate the continuous flow synthesis of Au@Ag core@shell nanomaterials using sequential jet-mixing reactors (JMRs). Connecting the two JMRs overcomes challenges with particle instability when the processes are separated. Using synthesis conditions typical for batch methods in the JMR resulted in a non-uniform particle size distribution. Through investigating the synthesis conditions of the Au core, the key parameters affecting the synthesis of well-defined nanoparticles are identified as the concentration of the reducing agent and the inclusion of bovine-serum albumin (BSA) to limit particle aggregation. The concentration of the reducing agent is adjusted to achieve a high yield of Au NPs. The adjusted concentration enabled continuous synthesis of Au@Ag core@shell nanoparticles using BSA as the stabilizing ligand in a dual jet mixing reactor system. Overall, this work provides insights on integrating sequential processes for the synthesis of core@shell nanomaterials.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 11","pages":" 2915-2924"},"PeriodicalIF":3.4,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/re/d3re00417a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141949281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Monica Gabriela, Benjamin T. Smith, Bart Connors, Marc Leslie, Adam Hartwick, Kevin Gant and Margaret M. Faul
{"title":"Environmental sustainability assessment as a driver for selection of the manufacturing processes of a bispecific T-cell engager","authors":"Monica Gabriela, Benjamin T. Smith, Bart Connors, Marc Leslie, Adam Hartwick, Kevin Gant and Margaret M. Faul","doi":"10.1039/D4RE00266K","DOIUrl":"10.1039/D4RE00266K","url":null,"abstract":"<p >A focus on environmental sustainability is important in selection of our commercial drug substance manufacturing processes. During clinical development of a bispecific T-cell engager (BITE) molecule we developed two processes to manufacture this important biologic: (1) a stirred tank process and (2) a continuous manufacturing process. We will describe the challenges and opportunities of developing and producing this novel biologic modality, while also minimizing the environmental impact. We will highlight the metrics and methods used to measure and improve the environmental performance of the processes, such as carbon emissions, water consumption, waste generation, and energy efficiency. The benefits of adopting a life-cycle management approach and leveraging continuous manufacturing technologies to enhance the sustainability of the process during development will be discussed and the results compared to the stir tank process to enable the identification of the optimal process for manufacturing of this innovative BITE molecule.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 10","pages":" 2773-2783"},"PeriodicalIF":3.4,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141949276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Combination of near-infrared spectroscopy and a transient flow method for efficient kinetic analysis of the Claisen rearrangement†","authors":"Yoshihiro Takebayashi, Kiwamu Sue and Sho Kataoka","doi":"10.1039/D4RE00301B","DOIUrl":"10.1039/D4RE00301B","url":null,"abstract":"<p >Kinetic analysis of the Claisen rearrangement of allyl phenyl ether (APE) to 2-allylphenol was conducted in pressurized <em>N</em>-methylpyrrolidone (NMP) at various temperatures from 240 to 280 °C using an automated flow reactor. Rapid inline analysis using a compact near-infrared (NIR) spectrometer coupled with a flow rate ramp as a reciprocal function of the experimental time allowed high-density data acquisition (900 points in 15 min) of the conversion of APE over residence times ranging from 0.8 to 10.3 min. Inline NIR monitoring was also employed to measure the residence time of the NMP solution in the reactor. The residence time was shown to decrease by 26% with increasing temperature from 20 to 300 °C due to the thermal expansion of the solution. The APE conversion exhibited first-order kinetics with an activation energy of 137 ± 1 kJ mol<small><sup>−1</sup></small> and a pre-exponential factor of 7.3 × 10<small><sup>10</sup></small> s<small><sup>−1</sup></small>. The result of the flow rate ramp experiment was consistent with that of the temperature ramp experiment, while the latter gave a continuous Arrhenius plot in a wider temperature range from 230 to 290 °C. The rate constant in NMP was found to be 10 and 1.5 times smaller than those reported in subcritical water and alcohol solvents, respectively.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 11","pages":" 2975-2983"},"PeriodicalIF":3.4,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141949278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Diana V. Silva-Brenes, Shailesh Agrawal, Vilmalí López-Mejías, Jorge Duconge, Cornelis P. Vlaar, Jean-Christophe M. Monbaliu and Torsten Stelzer
{"title":"Continuous flow synthesis and crystallization of modafinil: a novel approach for integrated manufacturing†","authors":"Diana V. Silva-Brenes, Shailesh Agrawal, Vilmalí López-Mejías, Jorge Duconge, Cornelis P. Vlaar, Jean-Christophe M. Monbaliu and Torsten Stelzer","doi":"10.1039/D4RE00273C","DOIUrl":"10.1039/D4RE00273C","url":null,"abstract":"<p >This study reports efforts toward the integrated advanced manufacturing of the anti-narcoleptic drug modafinil. It showcases a holistic approach from flow synthesis to purification <em>via</em> continuous crystallization. The integration strategy included a necessary optimization of the reported flow synthesis for modafinil, enabling prolonged operation and consistent crude quality. The reactor effluents were subsequently processed downstream for purification utilizing two single stage mixed suspension mixed product removal crystallizers. The first stage was an antisolvent cooling crystallization, providing refined modafinil with >98% yield. The second cooling crystallization delivered crystalline modafinil with >99% purity in the required polymorphic form I suitable for formulation.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 10","pages":" 2728-2739"},"PeriodicalIF":3.4,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141949272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Indra J. Budiarso, Shusaku Fujita, Shota Saito, Hermawan Judawisastra, Kotaro Takeyasu and Arie Wibowo
{"title":"Facile fabrication of graphitic carbon nitride/polydopamine/polyurethane foam as a floating photocatalyst for synthetic dye remediation†","authors":"Indra J. Budiarso, Shusaku Fujita, Shota Saito, Hermawan Judawisastra, Kotaro Takeyasu and Arie Wibowo","doi":"10.1039/D4RE00193A","DOIUrl":"10.1039/D4RE00193A","url":null,"abstract":"<p >Graphitic carbon nitride (GCN) has attracted much interest in photocatalytic wastewater treatment. However, GCN sinks when applied in wastewater and photogenerated electron–hole (e–h) pairs are easily recombined. In this work, a GCN-based floating photocatalyst with polyurethane foam (PUF) as a floating support and polydopamine (PDA) as the immobilization anchor and photogenerated electron acceptor was prepared <em>via</em> a one-step immobilization process. Compared to the sample prepared <em>via</em> a two-step immobilization process (PUF/PDA/GCN-2), the sample prepared through the one-step immobilization process (PUF/PDA/GCN-1) exhibited a more uniform distribution of GCN particles (as confirmed from SEM images) with a GCN loading content (5.0%) four times greater than that for PUF/PDA/GCN-2 (1.3%), as shown in TGA results. Interestingly, the addition of PDA could increase the photocatalytic performance more than twice that of the sample without PDA addition. Moreover, 4.7 × 10<small><sup>−5</sup></small> mmol dye could be degraded per mg of catalyst on PUF/PDA/GCN-1, which is superior to several existing GCN-based floating photocatalysts. This phenomenon was triggered by efficient e–h pair separation, as suggested by the photoluminescence (PL) spectrum and uniform small-sized GCN distribution. The interaction mechanism among PUF, PDA, and GCN is also proposed based on FTIR and XPS studies as well as the photocatalytic mechanism. The successful preparation of floating photocatalysts through a cheap and facile route was thus demonstrated and has potential for large-scale commercialization.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 10","pages":" 2718-2727"},"PeriodicalIF":3.4,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141949273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A novel magnetic nanoparticle as an efficient and recyclable heterogeneous catalyst for the Suzuki cross-coupling reaction†","authors":"Hui Jin, Mengyu Cui, Peiwen Liu, Zhuo Wang, Tongxia Jin, Yonghui Yang, Weiping Zhu and Xuhong Qian","doi":"10.1039/D4RE00226A","DOIUrl":"10.1039/D4RE00226A","url":null,"abstract":"<p >Heterogeneous palladium catalysts are widely used in catalytic hydrogenation, oxidation, reduction, and coupling reactions due to their good stability, recyclability, and reusability. Based on the palladium ion fluorescent probe, a novel magnetically recyclable heterogeneous palladium catalyst Fe<small><sub>3</sub></small>O<small><sub>4</sub></small>@FSM@Pd was constructed and characterized, which is highly efficient and reusable for the Suzuki–Miyaura cross-coupling reaction. The subsequent series of Maitlis' filtration test, catalyst concentration–yield kinetic experiments, and phase trajectory experiments further demonstrated that Fe<small><sub>3</sub></small>O<small><sub>4</sub></small>@FSM@Pd catalyzed through a heterogeneous mechanism under selected reaction conditions. In addition, Fe<small><sub>3</sub></small>O<small><sub>4</sub></small>@FSM@Pd was applied to catalyze the synthesis of five intermediates of active pharmaceutical ingredients (APIs): valsartan, sonidegib, erdafitinib, tubulin inhibitor, and lumacaftor. Importantly, the palladium residue in the API intermediates synthesized with Fe<small><sub>3</sub></small>O<small><sub>4</sub></small>@FSM@Pd as catalyst was less than 1 ppm. Furthermore, Fe<small><sub>3</sub></small>O<small><sub>4</sub></small>@FSM@Pd is stable and can be reused at least 5 times without losing activity.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 11","pages":" 2954-2962"},"PeriodicalIF":3.4,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141949275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuankai Huang, Jiahao Huang, Riyang Shu, Libin Lei, Qingbin Song, Zhipeng Tian, Chao Wang and Ying Chen
{"title":"Hydrogen production by aqueous phase reforming of methanol over stable C-modified NiMgAl hydrotalcite catalyst","authors":"Yuankai Huang, Jiahao Huang, Riyang Shu, Libin Lei, Qingbin Song, Zhipeng Tian, Chao Wang and Ying Chen","doi":"10.1039/D4RE00308J","DOIUrl":"10.1039/D4RE00308J","url":null,"abstract":"<p >Although catalytic aqueous phase reforming (APR) of methanol is a promising hydrogen production method, Ni-based catalysts suffer from low catalyst hydrothermal stability due to severe active metal leaching. To address this problem, NiMgAl hydrotalcite is applied as a support and citric acid as a carbon source to prepare a C-modified NiMgAl hydrotalcite catalyst, and its reaction performance for hydrogen production <em>via</em> methanol APR is evaluated. The introduction of carbon species enhances the interaction between surface Ni and the Mg(Ni,Al)O support, thereby increasing the stability of the catalyst. This enhancement induces the migration of Ni to the catalyst surface, promoting the formation of Ni clusters and exposing more active sites on the catalyst surface. Simultaneously, the carbon modification resulted in smaller Ni particle sizes in the catalyst, which facilitated the reduction of Ni clusters on the catalyst surface. Additionally, part of the NiO was reduced to Ni monomers by carbon and subsequently stabilized, enhancing the activity of the Ni metal on the surface. Compared with the carbon-free NiMgAl catalyst, the C-modified NiMgAl catalyst exhibited an increase in methanol conversion and total hydrogen yield of 83.19% and 82.78%, respectively. Over 17 cyclic reactions are achieved without a sharp decline in hydrogen production yield, implying good hydrothermal stability by anchoring Ni metal sites on the C-modified NiMgAl catalyst.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 10","pages":" 2762-2772"},"PeriodicalIF":3.4,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141949274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}