RSC Applied Interfaces最新文献

筛选
英文 中文
Electropolishing Fe-based biodegradable metals for vascular applications: impact on surface properties, corrosion and cell viability 用于血管应用的铁基生物可降解金属电抛光:对表面特性、腐蚀和细胞活力的影响
RSC Applied Interfaces Pub Date : 2024-12-05 DOI: 10.1039/D4LF00113C
Letícia Marin de Andrade, Carlo Paternoster, Pascale Chevallier, Sofia Gambaro, Francesco Copes, Vinicius Fidelis de Oliveira Sales and Diego Mantovani
{"title":"Electropolishing Fe-based biodegradable metals for vascular applications: impact on surface properties, corrosion and cell viability","authors":"Letícia Marin de Andrade, Carlo Paternoster, Pascale Chevallier, Sofia Gambaro, Francesco Copes, Vinicius Fidelis de Oliveira Sales and Diego Mantovani","doi":"10.1039/D4LF00113C","DOIUrl":"https://doi.org/10.1039/D4LF00113C","url":null,"abstract":"<p >Biodegradable metals constitute a new class of materials for medical application. By breaking the paradigm that a metallic biomaterial to be implanted in the body must be corrosion resistant, biodegradable metals advance surgery allowing clinicians to dispose of temporary devices. Among them, Fe–Mn–C steel has emerged due to its outstanding mechanical properties, while its degradation rate must be carefully controlled. For this purpose, especially for medical devices, the surface finishing plays a pivotal role and influences both the corrosion behavior and biological response of these materials. Therefore, this research investigated the impact of electropolishing (EP) processes on the Fe–Mn–C alloy surface finishing in terms of composition, morphology, topography, and wettability. Three electrolytes were carefully selected and used in this study: EP1 (ethanol, perchloric acid, and glycerol), EP2 (perchloric acid, acetic acid, and glycerol), and an ionic liquid EP3 (choline chloride and ethylene glycol). Corrosion behavior and cell viability were investigated and compared with those obtained on mechanically polished (MP) samples. The results displayed that electropolishing was governed by two mechanisms: 1) controlled mass transport for EP1 and EP2, and 2) an adsorption mechanism for EP3. Among the tested conditions, EP2 emerged as a promising overall EP process. It promoted the smoothest and most hydrophilic passivated surface (<em>R</em><small><sub>a</sub></small> ∼ 10 nm, WCA = 53°, respectively) and the highest ratio of metal oxides to metallic elements. In addition, EP2 exhibited appropriate corrosion behavior suitable for biodegradable metal devices by inducing the formation of a protective oxide layer. Furthermore, cell viability with EP2 was comparable to that observed with MP. These findings emphasize the potential of electropolishing for enhancing the properties of Fe–Mn–C alloys, paving their applicability, especially in cardiovascular devices.</p>","PeriodicalId":101138,"journal":{"name":"RSC Applied Interfaces","volume":" 2","pages":" 420-438"},"PeriodicalIF":0.0,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/lf/d4lf00113c?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143594451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Eco-friendly integration of gold nanoparticles into additive manufacturing filaments: advancing conductivity and electrochemical performance† 环保整合金纳米颗粒到增材制造细丝:提高电导率和电化学性能†
RSC Applied Interfaces Pub Date : 2024-12-05 DOI: 10.1039/D4LF00368C
Elena Bernalte, Karen K. L. Augusto, Robert D. Crapnell, Hayley G. Andrews, Orlando Fatibello-Filho and Craig E. Banks
{"title":"Eco-friendly integration of gold nanoparticles into additive manufacturing filaments: advancing conductivity and electrochemical performance†","authors":"Elena Bernalte, Karen K. L. Augusto, Robert D. Crapnell, Hayley G. Andrews, Orlando Fatibello-Filho and Craig E. Banks","doi":"10.1039/D4LF00368C","DOIUrl":"https://doi.org/10.1039/D4LF00368C","url":null,"abstract":"<p >This work reports the inclusion of gold nanoparticles within conductive additive manufacturing filament for an improved electrochemical and electroanalytical performance. An eco-friendly synthesis was utilised, where graphite flakes are used as a natural reducing agent for the formation of gold nanoparticles. In this way, the graphite acts as both a reducing agent and contributes to the conductivity of the filament. The presence of gold nanoparticles on the surface of the graphite was confirmed through SEM, EDX, XRD and XPS analysis, after which the graphite was thermally mixed into recycled PLA along with carbon black and castor oil to create the conductive filament. Electrodes printed from this filament produced an enhanced electrochemical performance with a Δ<em>E</em><small><sub>p</sub></small> of 111 (±5) mV, a heterogeneous electron (charge) transfer rate constant, using hexaammineruthenium(<small>III</small>) chloride, of <em>k</em><small><sup>0</sup></small> of 2.04 (±0.08) × 10<small><sup>−3</sup></small> cm s<small><sup>−1</sup></small>, and the real electrochemical surface area, <em>A</em><small><sub>real</sub></small> of 0.53 (± 0.04) cm<small><sup>2</sup></small> upon the inclusion of gold nanoparticles. This filament also provided a significantly enhanced electroanalytical performance toward the proof-of-concept determination of lead(<small>II</small>), producing a linear range between 1–75 ppb (μg L<small><sup>−1</sup></small>), with a sensitivity of 37 nA ppb<small><sup>−1</sup></small>, an <em>R</em><small><sup>2</sup></small> value of 0.98 and a limit of detection and limit of quantification of 0.89 ppb and 2.97 ppb, respectively. The electrodes were additionally successfully applied toward the determination of lead(<small>II</small>) within river water samples. This work demonstrates how advancements in the production of conductive additive manufacturing filaments can be achieved, paving the way for new research opportunities while adhering to eco-friendly practices.</p>","PeriodicalId":101138,"journal":{"name":"RSC Applied Interfaces","volume":" 2","pages":" 439-450"},"PeriodicalIF":0.0,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/lf/d4lf00368c?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143594452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A phosphite derivative with stronger HF elimination ability as an additive for Li-rich based lithium-ion batteries at elevated temperatures† 一种具有较强HF消除能力的亚磷酸酯衍生物,可作为高温富锂基锂离子电池的添加剂
RSC Applied Interfaces Pub Date : 2024-12-03 DOI: 10.1039/D4LF00326H
Xiangzhen Zheng, Tao Huang, Ying Pan, Yongwei Chen, Mingdeng Wei and Maoxiang Wu
{"title":"A phosphite derivative with stronger HF elimination ability as an additive for Li-rich based lithium-ion batteries at elevated temperatures†","authors":"Xiangzhen Zheng, Tao Huang, Ying Pan, Yongwei Chen, Mingdeng Wei and Maoxiang Wu","doi":"10.1039/D4LF00326H","DOIUrl":"https://doi.org/10.1039/D4LF00326H","url":null,"abstract":"<p >Phosphite derivatives as film forming additives can effectively improve the electrochemical performance of cathodes in Li-ion batteries (LIBs). In this work, ethyl bis(trimethylsilyl) phosphite (TMSPE), which contains trimethylsilyl and ethyl functional groups, is used as a P-based additive for improving the electrochemical performance of a Li<small><sub>1.144</sub></small>Ni<small><sub>0.136</sub></small>Co<small><sub>0.136</sub></small>Mn<small><sub>0.544</sub></small>O<small><sub>2</sub></small> cathode. Further, the comparative evaluation of tris(trimethylsilyl) phosphite (TMSPi), TMSPE, and triethyl phosphite (TEP) as phosphite-based additives for Li<small><sub>1.144</sub></small>Ni<small><sub>0.136</sub></small>Co<small><sub>0.136</sub></small>Mn<small><sub>0.544</sub></small>O<small><sub>2</sub></small>/Li cells at 45 °C under a high voltage is also presented. Theoretical calculations and surface characterization revealed that TMSPE formed a thinner and stable cathode electrolyte interphase (CEI) on the surface of Li<small><sub>1.144</sub></small>Ni<small><sub>0.136</sub></small>Co<small><sub>0.136</sub></small>Mn<small><sub>0.544</sub></small>O<small><sub>2</sub></small>, which has lower interfacial impedance, stronger HF elimination, and transition metal dissolution inhibition, resulting in the best cell performance among the three phosphite-based additives.</p>","PeriodicalId":101138,"journal":{"name":"RSC Applied Interfaces","volume":" 1","pages":" 251-260"},"PeriodicalIF":0.0,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/lf/d4lf00326h?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solid-lubrication properties of copper benzene-1,4-dicaboxylate, a metal–organic framework with a two-dimensional layered crystal structure† 具有二维层状晶体结构†的金属有机骨架-1,4-二羧酸铜的固体润滑性能
RSC Applied Interfaces Pub Date : 2024-12-03 DOI: 10.1039/D4LF00267A
Hiroshi Eguchi, Sara Kato, Satoru Maegawa, Fumihiro Itoigawa and Kenji Nagata
{"title":"Solid-lubrication properties of copper benzene-1,4-dicaboxylate, a metal–organic framework with a two-dimensional layered crystal structure†","authors":"Hiroshi Eguchi, Sara Kato, Satoru Maegawa, Fumihiro Itoigawa and Kenji Nagata","doi":"10.1039/D4LF00267A","DOIUrl":"https://doi.org/10.1039/D4LF00267A","url":null,"abstract":"<p >Solid lubricants are widely used to control friction and wear in moving contact areas. In particular, inorganic materials with layered crystal structures, such as graphite, are a well-known category of solid lubricant. However, their structural designability is restricted because of their chemically stable nature, making it difficult to control their tribological characteristics. In this study, the solid lubricity of copper(<small>II</small>) benzene-1,4-dicarboxylate (CuBDC), a two-dimensional metal–organic framework (2D-MOF), was investigated as a new type of solid lubricant with structural diversity. The tribological measurements of powder-supported specimens revealed that CuBDC exhibited good lubrication properties comparable to those of typical solid lubricants, such as graphite and polytetrafluoroethylene. From the scanning electron microscopy observations of the worn surfaces of the CuBDC-supported specimen, the layered crystal structure of CuBDC effectively formed a smooth wear surface at the contact area. In contrast, specimens supporting copper(<small>II</small>) benzoate and copper(<small>II</small>) benzene-1,3,5-tricarboxylate, which have similar chemical natures as CuBDC, exhibited high frictional force, reflecting on the difference in their crystal structures. Furthermore, the transformation of the CuBDC crystal by thermal treatment, which afforded interlayer coordination bonds, increased the friction coefficient. These results suggest that the solid lubricity of CuBDC originates from its layered crystal structure. Thus, the 2D-MOFs with layered crystal structures are potential candidates for solid lubricants with good property tunability.</p>","PeriodicalId":101138,"journal":{"name":"RSC Applied Interfaces","volume":" 2","pages":" 451-459"},"PeriodicalIF":0.0,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/lf/d4lf00267a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143594453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multilevel azopolymer patterning from digital holographic lithography 数字全息光刻的多层偶氮聚合物图案化
RSC Applied Interfaces Pub Date : 2024-11-26 DOI: 10.1039/D4LF00358F
Marcella Salvatore, Francesco Reda, Fabio Borbone and Stefano Luigi Oscurato
{"title":"Multilevel azopolymer patterning from digital holographic lithography","authors":"Marcella Salvatore, Francesco Reda, Fabio Borbone and Stefano Luigi Oscurato","doi":"10.1039/D4LF00358F","DOIUrl":"https://doi.org/10.1039/D4LF00358F","url":null,"abstract":"<p >Azopolymer-based maskless lithography enables direct, all-optical fabrication of complex surface patterns. However, typical surface reliefs are limited to smooth profiles. Here, by investigating the resolution, contrast ratio, and gray-scale nonlinearities of a holo-lithographic setup based on computer-generated holography, we extend this patterning approach to fabricate, for the first time, multilevel reliefs with step-like discontinuities.</p>","PeriodicalId":101138,"journal":{"name":"RSC Applied Interfaces","volume":" 1","pages":" 56-60"},"PeriodicalIF":0.0,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/lf/d4lf00358f?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recycled silicon solar cell-derived nanostructured p-black silicon device for high performance NO2 gas sensor applications† 再生硅太阳能电池衍生的纳米结构p-黑硅器件,用于高性能NO2气体传感器应用†
RSC Applied Interfaces Pub Date : 2024-11-22 DOI: 10.1039/D4LF00299G
Mahaboobbatcha Aleem, Ramakrishnan Vishnuraj and Biji Pullithadathil
{"title":"Recycled silicon solar cell-derived nanostructured p-black silicon device for high performance NO2 gas sensor applications†","authors":"Mahaboobbatcha Aleem, Ramakrishnan Vishnuraj and Biji Pullithadathil","doi":"10.1039/D4LF00299G","DOIUrl":"https://doi.org/10.1039/D4LF00299G","url":null,"abstract":"<p >Nitrogen dioxide (NO<small><sub>2</sub></small>) is a toxic gas that can cause respiratory problems, and sensing its presence is crucial for environmental monitoring and industrial safety. This investigation presents a novel approach towards sensing NO<small><sub>2</sub></small> gas by utilizing partially completed/recycled silicon solar cells employing a metal-assisted etching process to fabricate a high-performance p-black-silicon based sensor. Structural and morphological analyses using X-ray diffraction patterns, Raman spectroscopy and cross sectional FESEM characterization confirm the integrity of the p-B-silicon sensor. By combining recycling techniques with advanced fabrication methods, the resulting sensor exhibits exceptional sensitivity, a low detection limit of 1 ppm, and rapid response times (12–14 s) when exposed to NO<small><sub>2</sub></small> gas concentrations ranging from 1 to 5 ppm. The enhanced sensitivity is attributed to the unique nanostructured comb-like morphology of the sensor material, which facilitates fast charge transport mechanisms, and a plausible sensing mechanism has been proposed and explained using a depletion model diagram and energy model diagram. This eco-friendly and cost-effective solution not only addresses electronic waste concerns but also highlights the potential of sustainable practices in scientific research. The findings emphasize on the importance of environmental consciousness and innovation, showcasing a promising future for gas sensing technology. By utilizing recycled materials and advanced fabrication techniques, this study contributes to the development of efficient, eco-friendly sensors for environmental monitoring applications, paving the way for a more sustainable and technologically advanced future in the field of gas sensors.</p>","PeriodicalId":101138,"journal":{"name":"RSC Applied Interfaces","volume":" 1","pages":" 220-229"},"PeriodicalIF":0.0,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/lf/d4lf00299g?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Selective separation of Am(iii)/Eu(iii) using heterocyclic bistriazolyl phosphonate grafted zirconia and titania solid phase extractants† 杂环膦酸双三唑接枝氧化锆和氧化钛固相萃取剂†选择性分离Am(iii)/Eu(iii)
RSC Applied Interfaces Pub Date : 2024-11-21 DOI: 10.1039/D4LF00277F
O.-M. Hiltunen, T. Suominen, J. Aho, M. Otaki, A. Zupanc, S. Hietala, G. Silvennoinen and R. Koivula
{"title":"Selective separation of Am(iii)/Eu(iii) using heterocyclic bistriazolyl phosphonate grafted zirconia and titania solid phase extractants†","authors":"O.-M. Hiltunen, T. Suominen, J. Aho, M. Otaki, A. Zupanc, S. Hietala, G. Silvennoinen and R. Koivula","doi":"10.1039/D4LF00277F","DOIUrl":"https://doi.org/10.1039/D4LF00277F","url":null,"abstract":"<p >Surface functionalization of metal oxides with phosphonic acid monolayers by covalent bonding enables the generation of robust hybrid materials with enhanced separation properties. Mesoporous crystalline zirconia and titania serve as applicable inorganic supports with high thermal stability and resistance to oxidation, acidity and radiolysis. We have fabricated selective solid phase extractants that efficiently separate americium and europium from each other, <em>via</em> straightforward grafting of the zirconia and titania surfaces with N- and S-donor complexing agents, namely 2,6-bis-triazolyl-pyridine derivatives. Separation factors (Am/Eu) up to 13 were obtained in binary solution at pH 2 and preference for Am over Eu was observed even in Eu excess solution. These stable hybrid materials can be utilized for separation purposes without substantial degradation, providing advantageous reusability and a greener option in comparison to commonly used solvent extraction methods.</p>","PeriodicalId":101138,"journal":{"name":"RSC Applied Interfaces","volume":" 1","pages":" 279-291"},"PeriodicalIF":0.0,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/lf/d4lf00277f?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrophoretically deposited artificial cathode electrolyte interphase for improved performance of NMC622 at high voltage operation† 电泳沉积人工阴极电解质界面,用于提高NMC622在高压操作下的性能†
RSC Applied Interfaces Pub Date : 2024-11-21 DOI: 10.1039/D4LF00319E
Inbar Anconina and Diana Golodnitsky
{"title":"Electrophoretically deposited artificial cathode electrolyte interphase for improved performance of NMC622 at high voltage operation†","authors":"Inbar Anconina and Diana Golodnitsky","doi":"10.1039/D4LF00319E","DOIUrl":"https://doi.org/10.1039/D4LF00319E","url":null,"abstract":"<p >High-voltage Ni-rich active materials are widely used in cathodes of high-energy-density lithium-ion batteries (LIBs). However, the high charge cutoff voltages lead to significant degradation and capacity fading, caused by electrolyte decomposition, transition metal dissolution, structural distortion, and more. Herein, we present an artificial cathode electrolyte interphase (ART-CEI) as a protective coating on the surface of the LiNi<small><sub>0.6</sub></small>Mn<small><sub>0.2</sub></small>Co<small><sub>0.2</sub></small>O<small><sub>2</sub></small> (NMC622) cathode. A composite film, prepared from argyrodite Li<small><sub>6</sub></small>PS<small><sub>5</sub></small>Cl (LPSC) ion conducting nanoparticles and a polymerized ionic liquid (PIL) as a binder, was electrophoretically deposited on the surface of the cathode. We found that capacity retention at high-voltage operation (4.3 and 4.5 V) is improved due to the coating. Besides the stability improvement, the electrochemical performance of the coated cathode shows an enhancement in rate performance and lower resistances of the anode solid electrolyte interphase (SEI), the cathode electrolyte interphase (CEI), and charge transfer processes during cycling.</p>","PeriodicalId":101138,"journal":{"name":"RSC Applied Interfaces","volume":" 1","pages":" 261-278"},"PeriodicalIF":0.0,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/lf/d4lf00319e?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel polymer/halloysite composites with high halloysite content and remarkable mechanical strength 新型聚合物/高岭土复合材料,高岭土含量高,机械强度显著
RSC Applied Interfaces Pub Date : 2024-11-20 DOI: 10.1039/D4LF00356J
Mingxuan Zhang, Camila Sabatini, Kaiwen Chen, Steven Makowka, Ruijia Hu, Mark Swihart and Chong Cheng
{"title":"Novel polymer/halloysite composites with high halloysite content and remarkable mechanical strength","authors":"Mingxuan Zhang, Camila Sabatini, Kaiwen Chen, Steven Makowka, Ruijia Hu, Mark Swihart and Chong Cheng","doi":"10.1039/D4LF00356J","DOIUrl":"https://doi.org/10.1039/D4LF00356J","url":null,"abstract":"<p >Halloysite nanotubes (HNTs) are of interest for use in nanocomposites due to their unique cylindrical structure and resulting properties. Various polymer/HNT composites have been studied, but generally these composites have HNTs as a minor component. Here, we report novel polymer/HNT composites with high HNT content facilitated by strong hydrogen-bonding interactions between the polymer and HNTs. These composites with 50–75 wt% HNTs were prepared by <em>in situ</em> polymerization reactions of mixtures comprising HNTs, acrylic acid, triethylene glycol dimethacrylate, potassium persulfate, and water, followed by drying. The chemical structure of composites was verified by Fourier-transform infrared spectroscopy (FTIR). The high dispersity of HNTs in the poly(acrylic acid)-based matrix was demonstrated by scanning electron microscopy (SEM). Studies of mechanical properties illustrated greatly enhanced mechanical strength of the composites relative to the pure polymer matrix, with the highest flexural strength, microhardness, and ultimate tensile strength achieved for the composite with 66.7 wt% HNTs. Thus, the incorporation of high mass fractions of HNTs in a polymer matrix can offer potential benefits for applications requiring superior mechanical properties, in addition to other functions endowed by either HNTs or the polymer matrix. Differential scanning calorimetry (DSC) characterization did not show evidence of a glass transition in the polymer matrices of these composites, and thermogravimetric analysis (TGA) revealed increased thermal stability of the composites relative to the matrices. Swelling tests indicated that the swelling capacity is primarily determined by the amount of polymer present in the composite, and the presence of HNTs may facilitate mass transfer of water within the polymer matrix.</p>","PeriodicalId":101138,"journal":{"name":"RSC Applied Interfaces","volume":" 2","pages":" 410-419"},"PeriodicalIF":0.0,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/lf/d4lf00356j?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143594501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-efficiency prediction of water adsorption performance of porous adsorbents by lattice grand canonical Monte Carlo molecular simulation† 用晶格大正则蒙特卡罗分子模拟高效预测多孔吸附剂的吸水性能
RSC Applied Interfaces Pub Date : 2024-11-18 DOI: 10.1039/D4LF00354C
Zhilu Liu, Wei Li and Song Li
{"title":"High-efficiency prediction of water adsorption performance of porous adsorbents by lattice grand canonical Monte Carlo molecular simulation†","authors":"Zhilu Liu, Wei Li and Song Li","doi":"10.1039/D4LF00354C","DOIUrl":"https://doi.org/10.1039/D4LF00354C","url":null,"abstract":"<p >Water adsorption has come under the spotlight for its tremendous potential in numerous environment- and energy-related applications. Given the vast adsorbent space, computational studies play a critically significant role in facilitating the discovery of potential candidates. However, large-scale computational deployment by conventional grand canonical Monte Carlo (GCMC) to identify optimal water adsorbents is challenging due to its extreme computation time and expense. In this work, a lattice GCMC method (LGCMC) with hierarchically constructed discretized interaction of host–guest and guest–guest driven by atomistic potentials was attempted to accurately and rapidly simulate the water adsorption performance of adsorbents using a coarse-grained Molinero water (mW) model. Nevertheless, given the monatomic nature of the mW model, leading to different phase behaviors in nanoscale confinement, a remarkable discrepancy in the primitive LGCMC-predicted isotherms, especially different step positions, compared with experiments was observed. Thus, a general correction strategy of water adsorption isotherm by tuning the saturation pressure was adopted. Taking metal–organic frameworks (MOFs) as examples, simulated water adsorption isotherms consistent with experimental results were obtained by the correction strategy using LGCMC. It is worth highlighting that the simulation of water adsorption in adsorbents by LGCMC can be accomplished within a few hours, which yields a significant acceleration of two to three orders of magnitude compared to conventional GCMC simulations. Therefore, the corrected LGCMC is a powerful tool to screen a huge number of adsorbents to facilitate the discovery of potential adsorbents for water adsorption-related applications, and this study provides microscopic insights into water adsorption mechanisms in porous adsorbents.</p>","PeriodicalId":101138,"journal":{"name":"RSC Applied Interfaces","volume":" 1","pages":" 230-242"},"PeriodicalIF":0.0,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/lf/d4lf00354c?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信