RSC Applied Interfaces最新文献

筛选
英文 中文
Solid-supported polymer-lipid hybrid membrane for bioelectrochemistry of a membrane redox enzyme.
RSC Applied Interfaces Pub Date : 2025-02-11 DOI: 10.1039/d4lf00362d
Rosa Catania, George R Heath, Michael Rappolt, Stephen P Muench, Paul A Beales, Lars J C Jeuken
{"title":"Solid-supported polymer-lipid hybrid membrane for bioelectrochemistry of a membrane redox enzyme.","authors":"Rosa Catania, George R Heath, Michael Rappolt, Stephen P Muench, Paul A Beales, Lars J C Jeuken","doi":"10.1039/d4lf00362d","DOIUrl":"https://doi.org/10.1039/d4lf00362d","url":null,"abstract":"<p><p>Hybrid membranes, consisting of phospholipids and amphiphilic block polymers, offer enhanced stability compared to liposomes and greater biocompatibility than polymersomes. These qualities make them a versatile platform for a wide range of applications across various fields. In this study, we have investigated the ability of solid-supported polymer-lipid hybrid membranes (SSHM) to act as a platform for bioelectrochemistry of membrane proteins. The redox enzyme, cytochrome <i>bo</i> <sub><i>3</i></sub> (cyt <i>bo</i> <sub><i>3</i></sub> ), a terminal oxidase in <i>Escherichia coli</i>, was reconstituted into hybrid vesicles (HVs), which were subsequently tested for their ability to form SSHMs on different self-assembled monolayers (SAMs) on gold electrodes. SSHM formation was monitored with electrochemical impedance spectroscopy (EIS), quartz crystal microbalance with dissipation (QCM-D), and atomic force microscopy (AFM). SSHMs were successfully formed on gold electrodes with mixed SAMs of 6-mercapto-1-hexanol and 1-hexanethiol at a 1 : 1 ratio. The activity of cyt <i>bo</i> <sub><i>3</i></sub> was confirmed using cyclic voltammetry (CV), with electron transfer to cyt <i>bo</i> <sub><i>3</i></sub> mediated by a lipophilic substrate-analogue decylubiquinone (DQ). SSHMs formed with HVs-cyt <i>bo</i> <sub><i>3</i></sub> samples, stored for more than one year before use, remain bioelectrocatalytically active, confirming our previously established longevity and stability of HV systems.</p>","PeriodicalId":101138,"journal":{"name":"RSC Applied Interfaces","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11834424/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143470335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The first year of RSC Applied Interfaces: a retrospective RSC应用接口第一年:回顾
RSC Applied Interfaces Pub Date : 2025-01-07 DOI: 10.1039/D4LF90034K
Shelley A. Claridge, Jianbin Huang, Serena Margadonna, Ryan Richards and Federico Rosei
{"title":"The first year of RSC Applied Interfaces: a retrospective","authors":"Shelley A. Claridge, Jianbin Huang, Serena Margadonna, Ryan Richards and Federico Rosei","doi":"10.1039/D4LF90034K","DOIUrl":"https://doi.org/10.1039/D4LF90034K","url":null,"abstract":"<p >A graphical abstract is available for this content</p>","PeriodicalId":101138,"journal":{"name":"RSC Applied Interfaces","volume":" 1","pages":" 11-13"},"PeriodicalIF":0.0,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/lf/d4lf90034k?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A phosphite derivative with stronger HF elimination ability as an additive for Li-rich based lithium-ion batteries at elevated temperatures† 一种具有较强HF消除能力的亚磷酸酯衍生物,可作为高温富锂基锂离子电池的添加剂
RSC Applied Interfaces Pub Date : 2024-12-03 DOI: 10.1039/D4LF00326H
Xiangzhen Zheng, Tao Huang, Ying Pan, Yongwei Chen, Mingdeng Wei and Maoxiang Wu
{"title":"A phosphite derivative with stronger HF elimination ability as an additive for Li-rich based lithium-ion batteries at elevated temperatures†","authors":"Xiangzhen Zheng, Tao Huang, Ying Pan, Yongwei Chen, Mingdeng Wei and Maoxiang Wu","doi":"10.1039/D4LF00326H","DOIUrl":"https://doi.org/10.1039/D4LF00326H","url":null,"abstract":"<p >Phosphite derivatives as film forming additives can effectively improve the electrochemical performance of cathodes in Li-ion batteries (LIBs). In this work, ethyl bis(trimethylsilyl) phosphite (TMSPE), which contains trimethylsilyl and ethyl functional groups, is used as a P-based additive for improving the electrochemical performance of a Li<small><sub>1.144</sub></small>Ni<small><sub>0.136</sub></small>Co<small><sub>0.136</sub></small>Mn<small><sub>0.544</sub></small>O<small><sub>2</sub></small> cathode. Further, the comparative evaluation of tris(trimethylsilyl) phosphite (TMSPi), TMSPE, and triethyl phosphite (TEP) as phosphite-based additives for Li<small><sub>1.144</sub></small>Ni<small><sub>0.136</sub></small>Co<small><sub>0.136</sub></small>Mn<small><sub>0.544</sub></small>O<small><sub>2</sub></small>/Li cells at 45 °C under a high voltage is also presented. Theoretical calculations and surface characterization revealed that TMSPE formed a thinner and stable cathode electrolyte interphase (CEI) on the surface of Li<small><sub>1.144</sub></small>Ni<small><sub>0.136</sub></small>Co<small><sub>0.136</sub></small>Mn<small><sub>0.544</sub></small>O<small><sub>2</sub></small>, which has lower interfacial impedance, stronger HF elimination, and transition metal dissolution inhibition, resulting in the best cell performance among the three phosphite-based additives.</p>","PeriodicalId":101138,"journal":{"name":"RSC Applied Interfaces","volume":" 1","pages":" 251-260"},"PeriodicalIF":0.0,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/lf/d4lf00326h?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multilevel azopolymer patterning from digital holographic lithography 数字全息光刻的多层偶氮聚合物图案化
RSC Applied Interfaces Pub Date : 2024-11-26 DOI: 10.1039/D4LF00358F
Marcella Salvatore, Francesco Reda, Fabio Borbone and Stefano Luigi Oscurato
{"title":"Multilevel azopolymer patterning from digital holographic lithography","authors":"Marcella Salvatore, Francesco Reda, Fabio Borbone and Stefano Luigi Oscurato","doi":"10.1039/D4LF00358F","DOIUrl":"https://doi.org/10.1039/D4LF00358F","url":null,"abstract":"<p >Azopolymer-based maskless lithography enables direct, all-optical fabrication of complex surface patterns. However, typical surface reliefs are limited to smooth profiles. Here, by investigating the resolution, contrast ratio, and gray-scale nonlinearities of a holo-lithographic setup based on computer-generated holography, we extend this patterning approach to fabricate, for the first time, multilevel reliefs with step-like discontinuities.</p>","PeriodicalId":101138,"journal":{"name":"RSC Applied Interfaces","volume":" 1","pages":" 56-60"},"PeriodicalIF":0.0,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/lf/d4lf00358f?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recycled silicon solar cell-derived nanostructured p-black silicon device for high performance NO2 gas sensor applications† 再生硅太阳能电池衍生的纳米结构p-黑硅器件,用于高性能NO2气体传感器应用†
RSC Applied Interfaces Pub Date : 2024-11-22 DOI: 10.1039/D4LF00299G
Mahaboobbatcha Aleem, Ramakrishnan Vishnuraj and Biji Pullithadathil
{"title":"Recycled silicon solar cell-derived nanostructured p-black silicon device for high performance NO2 gas sensor applications†","authors":"Mahaboobbatcha Aleem, Ramakrishnan Vishnuraj and Biji Pullithadathil","doi":"10.1039/D4LF00299G","DOIUrl":"https://doi.org/10.1039/D4LF00299G","url":null,"abstract":"<p >Nitrogen dioxide (NO<small><sub>2</sub></small>) is a toxic gas that can cause respiratory problems, and sensing its presence is crucial for environmental monitoring and industrial safety. This investigation presents a novel approach towards sensing NO<small><sub>2</sub></small> gas by utilizing partially completed/recycled silicon solar cells employing a metal-assisted etching process to fabricate a high-performance p-black-silicon based sensor. Structural and morphological analyses using X-ray diffraction patterns, Raman spectroscopy and cross sectional FESEM characterization confirm the integrity of the p-B-silicon sensor. By combining recycling techniques with advanced fabrication methods, the resulting sensor exhibits exceptional sensitivity, a low detection limit of 1 ppm, and rapid response times (12–14 s) when exposed to NO<small><sub>2</sub></small> gas concentrations ranging from 1 to 5 ppm. The enhanced sensitivity is attributed to the unique nanostructured comb-like morphology of the sensor material, which facilitates fast charge transport mechanisms, and a plausible sensing mechanism has been proposed and explained using a depletion model diagram and energy model diagram. This eco-friendly and cost-effective solution not only addresses electronic waste concerns but also highlights the potential of sustainable practices in scientific research. The findings emphasize on the importance of environmental consciousness and innovation, showcasing a promising future for gas sensing technology. By utilizing recycled materials and advanced fabrication techniques, this study contributes to the development of efficient, eco-friendly sensors for environmental monitoring applications, paving the way for a more sustainable and technologically advanced future in the field of gas sensors.</p>","PeriodicalId":101138,"journal":{"name":"RSC Applied Interfaces","volume":" 1","pages":" 220-229"},"PeriodicalIF":0.0,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/lf/d4lf00299g?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Selective separation of Am(iii)/Eu(iii) using heterocyclic bistriazolyl phosphonate grafted zirconia and titania solid phase extractants† 杂环膦酸双三唑接枝氧化锆和氧化钛固相萃取剂†选择性分离Am(iii)/Eu(iii)
RSC Applied Interfaces Pub Date : 2024-11-21 DOI: 10.1039/D4LF00277F
O.-M. Hiltunen, T. Suominen, J. Aho, M. Otaki, A. Zupanc, S. Hietala, G. Silvennoinen and R. Koivula
{"title":"Selective separation of Am(iii)/Eu(iii) using heterocyclic bistriazolyl phosphonate grafted zirconia and titania solid phase extractants†","authors":"O.-M. Hiltunen, T. Suominen, J. Aho, M. Otaki, A. Zupanc, S. Hietala, G. Silvennoinen and R. Koivula","doi":"10.1039/D4LF00277F","DOIUrl":"https://doi.org/10.1039/D4LF00277F","url":null,"abstract":"<p >Surface functionalization of metal oxides with phosphonic acid monolayers by covalent bonding enables the generation of robust hybrid materials with enhanced separation properties. Mesoporous crystalline zirconia and titania serve as applicable inorganic supports with high thermal stability and resistance to oxidation, acidity and radiolysis. We have fabricated selective solid phase extractants that efficiently separate americium and europium from each other, <em>via</em> straightforward grafting of the zirconia and titania surfaces with N- and S-donor complexing agents, namely 2,6-bis-triazolyl-pyridine derivatives. Separation factors (Am/Eu) up to 13 were obtained in binary solution at pH 2 and preference for Am over Eu was observed even in Eu excess solution. These stable hybrid materials can be utilized for separation purposes without substantial degradation, providing advantageous reusability and a greener option in comparison to commonly used solvent extraction methods.</p>","PeriodicalId":101138,"journal":{"name":"RSC Applied Interfaces","volume":" 1","pages":" 279-291"},"PeriodicalIF":0.0,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/lf/d4lf00277f?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrophoretically deposited artificial cathode electrolyte interphase for improved performance of NMC622 at high voltage operation† 电泳沉积人工阴极电解质界面,用于提高NMC622在高压操作下的性能†
RSC Applied Interfaces Pub Date : 2024-11-21 DOI: 10.1039/D4LF00319E
Inbar Anconina and Diana Golodnitsky
{"title":"Electrophoretically deposited artificial cathode electrolyte interphase for improved performance of NMC622 at high voltage operation†","authors":"Inbar Anconina and Diana Golodnitsky","doi":"10.1039/D4LF00319E","DOIUrl":"https://doi.org/10.1039/D4LF00319E","url":null,"abstract":"<p >High-voltage Ni-rich active materials are widely used in cathodes of high-energy-density lithium-ion batteries (LIBs). However, the high charge cutoff voltages lead to significant degradation and capacity fading, caused by electrolyte decomposition, transition metal dissolution, structural distortion, and more. Herein, we present an artificial cathode electrolyte interphase (ART-CEI) as a protective coating on the surface of the LiNi<small><sub>0.6</sub></small>Mn<small><sub>0.2</sub></small>Co<small><sub>0.2</sub></small>O<small><sub>2</sub></small> (NMC622) cathode. A composite film, prepared from argyrodite Li<small><sub>6</sub></small>PS<small><sub>5</sub></small>Cl (LPSC) ion conducting nanoparticles and a polymerized ionic liquid (PIL) as a binder, was electrophoretically deposited on the surface of the cathode. We found that capacity retention at high-voltage operation (4.3 and 4.5 V) is improved due to the coating. Besides the stability improvement, the electrochemical performance of the coated cathode shows an enhancement in rate performance and lower resistances of the anode solid electrolyte interphase (SEI), the cathode electrolyte interphase (CEI), and charge transfer processes during cycling.</p>","PeriodicalId":101138,"journal":{"name":"RSC Applied Interfaces","volume":" 1","pages":" 261-278"},"PeriodicalIF":0.0,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/lf/d4lf00319e?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-efficiency prediction of water adsorption performance of porous adsorbents by lattice grand canonical Monte Carlo molecular simulation† 用晶格大正则蒙特卡罗分子模拟高效预测多孔吸附剂的吸水性能
RSC Applied Interfaces Pub Date : 2024-11-18 DOI: 10.1039/D4LF00354C
Zhilu Liu, Wei Li and Song Li
{"title":"High-efficiency prediction of water adsorption performance of porous adsorbents by lattice grand canonical Monte Carlo molecular simulation†","authors":"Zhilu Liu, Wei Li and Song Li","doi":"10.1039/D4LF00354C","DOIUrl":"https://doi.org/10.1039/D4LF00354C","url":null,"abstract":"<p >Water adsorption has come under the spotlight for its tremendous potential in numerous environment- and energy-related applications. Given the vast adsorbent space, computational studies play a critically significant role in facilitating the discovery of potential candidates. However, large-scale computational deployment by conventional grand canonical Monte Carlo (GCMC) to identify optimal water adsorbents is challenging due to its extreme computation time and expense. In this work, a lattice GCMC method (LGCMC) with hierarchically constructed discretized interaction of host–guest and guest–guest driven by atomistic potentials was attempted to accurately and rapidly simulate the water adsorption performance of adsorbents using a coarse-grained Molinero water (mW) model. Nevertheless, given the monatomic nature of the mW model, leading to different phase behaviors in nanoscale confinement, a remarkable discrepancy in the primitive LGCMC-predicted isotherms, especially different step positions, compared with experiments was observed. Thus, a general correction strategy of water adsorption isotherm by tuning the saturation pressure was adopted. Taking metal–organic frameworks (MOFs) as examples, simulated water adsorption isotherms consistent with experimental results were obtained by the correction strategy using LGCMC. It is worth highlighting that the simulation of water adsorption in adsorbents by LGCMC can be accomplished within a few hours, which yields a significant acceleration of two to three orders of magnitude compared to conventional GCMC simulations. Therefore, the corrected LGCMC is a powerful tool to screen a huge number of adsorbents to facilitate the discovery of potential adsorbents for water adsorption-related applications, and this study provides microscopic insights into water adsorption mechanisms in porous adsorbents.</p>","PeriodicalId":101138,"journal":{"name":"RSC Applied Interfaces","volume":" 1","pages":" 230-242"},"PeriodicalIF":0.0,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/lf/d4lf00354c?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A diatom frustule-based Mn2SiO4@C@SiO2 multilayer-structure composite as a high-performance anode electrode material for lithium-ion batteries† 基于硅藻支架Mn2SiO4@C@SiO2多层结构复合材料作为高性能锂离子电池负极材料†
RSC Applied Interfaces Pub Date : 2024-11-18 DOI: 10.1039/D4LF00324A
Shimao Sun, Hongchang Liu, Yuxin Chen, Hongwei Liu, Rongda Yu, Xingfu Zheng, Yunchao Li, Jian Zhu, Jinlan Xia and Jun Wang
{"title":"A diatom frustule-based Mn2SiO4@C@SiO2 multilayer-structure composite as a high-performance anode electrode material for lithium-ion batteries†","authors":"Shimao Sun, Hongchang Liu, Yuxin Chen, Hongwei Liu, Rongda Yu, Xingfu Zheng, Yunchao Li, Jian Zhu, Jinlan Xia and Jun Wang","doi":"10.1039/D4LF00324A","DOIUrl":"https://doi.org/10.1039/D4LF00324A","url":null,"abstract":"<p >Owing to its abundant reserves and high theoretical specific capacity, silica has been tested as an anode material for lithium-ion batteries. However, its utilization is limited by volume expansion during cycling and low electrical conductivity. Most studies have focused on designing nanostructures of SiO<small><sub>2</sub></small> or combining them with conductive phases to solve this problem. In this work, diatom-based biological silica with a natural hollow porous structure was used as a template to prepare diatom-based silica anode materials coated with Mn<small><sub>2</sub></small>SiO<small><sub>4</sub></small> nanoclusters <em>via</em> a hydrothermal method. A composite material with a structure of Mn<small><sub>2</sub></small>SiO<small><sub>4</sub></small>@C@SiO<small><sub>2</sub></small> was obtained. The Mn/SiO<small><sub>2</sub></small>@C@SiO<small><sub>2</sub></small> sandwich structure derived during electrochemical reduction has a high capacity and excellent rate performance and significantly inhibits the volume expansion of SiO<small><sub>2</sub></small>. The prepared anode material (AFD@C-Mn-40) with the Mn/SiO<small><sub>2</sub></small>@C@SiO<small><sub>2</sub></small> structure retained a specific discharge capacity of approximately 1112 mA h g<small><sup>−1</sup></small> after 100 cycles at 100 mA g<small><sup>−1</sup></small>, which provides new prospects for the large-scale application of silica.</p>","PeriodicalId":101138,"journal":{"name":"RSC Applied Interfaces","volume":" 1","pages":" 200-209"},"PeriodicalIF":0.0,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/lf/d4lf00324a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of interactions between amino acids and monolayers of charged side chains† 氨基酸与带电荷侧链单层之间相互作用的分析
RSC Applied Interfaces Pub Date : 2024-11-18 DOI: 10.1039/D4LF00310A
Akira Nomoto, Kentaro Shiraki and Tsukuru Minamiki
{"title":"Analysis of interactions between amino acids and monolayers of charged side chains†","authors":"Akira Nomoto, Kentaro Shiraki and Tsukuru Minamiki","doi":"10.1039/D4LF00310A","DOIUrl":"https://doi.org/10.1039/D4LF00310A","url":null,"abstract":"<p >Protein–protein interactions (PPIs) are regulated by multiple interactions among amino acids. However, the contribution of individual amino acid–amino acid interactions (AAIs) in PPIs is currently unclear because it is difficult to analyze the weak and nonspecific interactions among amino acids. Therefore, we constructed a quantitative analytical model to evaluate AAIs using a device with self-assembled monolayers (SAMs). We could evaluate the μM-order dissociation constant between amino acids and the side chain of amino acids based on the electrical response. In the cationic amino acid group, concentration-dependent responses were observed on a negatively charged SAM (3-mercaptopropionic acid). These responses were modulated by the concentration and valence of the competing ions, which indicated that the strength of electrostatic interactions among amino acids is different. In contrast, nonspecific responses to all amino acids used in this study were obtained on a positively charged SAM (2-mercaptoethylamine). These results indicate that the selectivity of interaction depends on the type of side chain in the assembled state. We believe that the analytical platform constructed in this study can be adapted to evaluate various AAIs that govern PPIs.</p>","PeriodicalId":101138,"journal":{"name":"RSC Applied Interfaces","volume":" 1","pages":" 243-250"},"PeriodicalIF":0.0,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/lf/d4lf00310a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信