Andrea Palumbo, Ullrich Steiner, Andrea Dodero and Ilja Gunkel
{"title":"Vanadium pentoxide mesoporous cathodes for Li-ion batteries†","authors":"Andrea Palumbo, Ullrich Steiner, Andrea Dodero and Ilja Gunkel","doi":"10.1039/D5LF00033E","DOIUrl":null,"url":null,"abstract":"<p >The combination of micro- and nanoporosity is advantageous for Li-ion intercalation in battery electrodes. In this work, we synthesize porous 10 μm-sized poly(styrene-vinylpyridine) block copolymer particles <em>via</em> an emulsion-based approach. The vinylpyridine-phase was then subjected to methanol swelling to enable vanadium ions infiltration, followed by calcination to obtain mesoporous vanadium pentoxide particles. These exhibited a hierarchical porosity, and electrodes manufactured from them displayed a very high specific surface area. Two liquid electrolytes were compared to manage solid-electrolyte-interface growth, which can clog nanopores. Notably, the combination of a lithium bis(trifluoromethane)sulfonimide-containing tetraethylene glycol dimethyl ether tetraglyme electrolyte with the hierarchically porous vanadium pentoxide electrodes demonstrated a substantial enhancement in cycling performance, surpassing established industry benchmarks.</p>","PeriodicalId":101138,"journal":{"name":"RSC Applied Interfaces","volume":" 4","pages":" 1082-1090"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/lf/d5lf00033e?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Applied Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/lf/d5lf00033e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The combination of micro- and nanoporosity is advantageous for Li-ion intercalation in battery electrodes. In this work, we synthesize porous 10 μm-sized poly(styrene-vinylpyridine) block copolymer particles via an emulsion-based approach. The vinylpyridine-phase was then subjected to methanol swelling to enable vanadium ions infiltration, followed by calcination to obtain mesoporous vanadium pentoxide particles. These exhibited a hierarchical porosity, and electrodes manufactured from them displayed a very high specific surface area. Two liquid electrolytes were compared to manage solid-electrolyte-interface growth, which can clog nanopores. Notably, the combination of a lithium bis(trifluoromethane)sulfonimide-containing tetraethylene glycol dimethyl ether tetraglyme electrolyte with the hierarchically porous vanadium pentoxide electrodes demonstrated a substantial enhancement in cycling performance, surpassing established industry benchmarks.