{"title":"A global analysis of coastal flood risk to the petrochemical distribution network in a changing climate","authors":"Kendall M. Capshaw, Jamie E. Padgett","doi":"10.1016/j.rcns.2022.10.002","DOIUrl":"10.1016/j.rcns.2022.10.002","url":null,"abstract":"<div><p>The global petroleum distribution network already faces a significant threat of disruption due to annual coastal flooding of major refining centers, which is expected to further increase with the effects of climate change. This study considers the impacts that sea level rise projections might have on the annual flood risk to coastal refineries, and how regional disruptions propagate across the network. Both the annual regional risk in terms of expected production disruption under a range of climate scenarios, as well as the expected production disruption due to a major flood event impacting refining hubs of high importance are assessed throughout the 21<sup>st</sup> century. These risks are propagated across the network to model the global impact of coastal flood-induced refining disruptions. This analysis provides insights on the relative risks that different climate scenarios and flood events pose globally, informing potential mitigation and adaptation needs of critical facilities. Due to the highly interconnected nature of the global petroleum product distribution network, these results highlight the need for mitigation considerations for even regions with low domestic production disruption risk due to coastal flood hazards, as disruptions in remote regions can have cascading consequences resulting in significant disruption to petroleum product supply around the world. Furthermore, such results can inform decisions regarding technology transitions or energy diversification in light of the new understanding of climate risks to coastal refineries and the global petroleum distribution network.</p></div>","PeriodicalId":101077,"journal":{"name":"Resilient Cities and Structures","volume":"1 3","pages":"Pages 52-60"},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772741622000308/pdfft?md5=4b904d388ad94526ddc96b9225ad7399&pid=1-s2.0-S2772741622000308-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83375714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multidimensional resilience decision-making for complex and substructured systems","authors":"Julian Salomon , Jasper Behrensdorf , Niklas Winnewisser , Matteo Broggi , Michael Beer","doi":"10.1016/j.rcns.2022.10.005","DOIUrl":"10.1016/j.rcns.2022.10.005","url":null,"abstract":"<div><p>Complex systems, such as infrastructure networks, industrial plants and jet engines, are of paramount importance to modern societies. However, these systems are subject to a variety of different threats. Novel research focuses not only on monitoring and improving the robustness and reliability of systems, but also on their recoverability from adverse events. The concept of resilience encompasses precisely these aspects. However, efficient resilience analysis for the modern systems of our societies is becoming more and more challenging. Due to their increasing complexity, system components frequently exhibit significant complexity of their own, requiring them to be modeled as systems, i.e., subsystems. Therefore, efficient resilience analysis approaches are needed to address this emerging challenge.</p><p>This work presents an efficient resilience decision-making procedure for complex and substructured systems. A novel methodology is derived by bringing together two methods from the fields of reliability analysis and modern resilience assessment. A resilience decision-making framework and the concept of survival signature are extended and merged, providing an efficient approach for quantifying the resilience of complex, large and substructured systems subject to monetary restrictions. The new approach combines both of the advantageous characteristics of its two original components: A direct comparison between various resilience-enhancing options from a multidimensional search space, leading to an optimal trade-off with respect to the system resilience and a significant reduction of the computational effort due to the separation property of the survival signature, once a subsystem structure has been computed, any possible characterization of the probabilistic part can be validated with no need to recompute the structure.</p><p>The developed methods are applied to the functional model of a multistage high-speed axial compressor and two substructured systems of increasing complexity, providing accurate results and demonstrating efficiency and general applicability.</p></div>","PeriodicalId":101077,"journal":{"name":"Resilient Cities and Structures","volume":"1 3","pages":"Pages 61-78"},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772741622000333/pdfft?md5=bbbe6b968bb90d66eba5371731c1ffa2&pid=1-s2.0-S2772741622000333-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76896627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Probability of failure estimation for highway bridges under combined effects of uncorrelated multiple hazards","authors":"Ameh Fioklou , Alice Alipour","doi":"10.1016/j.rcns.2022.10.007","DOIUrl":"10.1016/j.rcns.2022.10.007","url":null,"abstract":"<div><p>Majority of the highly populated regions of the United States are susceptible to multiple natural hazards. In such regions, the design and construction of structures under multiple hazards are critical to achieve the appropriate structural performance and infrastructure resilience. Multi-hazard reliability analysis of structural systems evaluates the system response under multiple random loads, some of which may occur simultaneously, or the effect of one may weaken the structural system before the occurrence of the next event. This paper studies the combined effects of scouring and earthquakes, as two uncorrelated extreme events, on the performance of reinforced concrete highway bridges. In a continuous effort to support future improvement in understanding the impact of multi-hazard loading scenario on bridges and to develop mitigation actions, this paper assesses the seismic vulnerability of a reinforced concrete highway bridge experiencing the effect of erosion due to the increase in frequency of flood events. The analytical fragility approach uses a three-dimensional nonlinear finite element model of the bridge cases with various levels of scouring. Because a bridge is system of components, a component level fragility curve is used to track the response of the components for a given ground motion intensity. The system fragility curves are developed to consider the vulnerability of critical components to assess the probability of bridge damage. The results indicate that under multi-hazard scenarios, the component governing the fragility of the bridge system varies depending on the level of scour sustained by the structure.</p></div>","PeriodicalId":101077,"journal":{"name":"Resilient Cities and Structures","volume":"1 3","pages":"Pages 79-93"},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772741622000357/pdfft?md5=d11e9a2dc90184ca657ac8321bcdb05c&pid=1-s2.0-S2772741622000357-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86668815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rohit Ranjan Singh, M. Bruneau, A. Stavridis, K. Sett
{"title":"Resilience deficit index for quantification of resilience","authors":"Rohit Ranjan Singh, M. Bruneau, A. Stavridis, K. Sett","doi":"10.1016/j.rcns.2022.06.001","DOIUrl":"https://doi.org/10.1016/j.rcns.2022.06.001","url":null,"abstract":"","PeriodicalId":101077,"journal":{"name":"Resilient Cities and Structures","volume":"54 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72661635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An overarching framework to assess the life-time resilience of deteriorating transportation networks in seismic-prone regions","authors":"Alice Alipour, Behrouz Shafei","doi":"10.1016/j.rcns.2022.07.002","DOIUrl":"10.1016/j.rcns.2022.07.002","url":null,"abstract":"<div><p>This study develops a comprehensive framework to assess the resilience of transportation networks consisting of deteriorating bridges subjected to earthquake events. For this purpose, the structural capacity of highway bridges is estimated during their service life using a set of detailed finite-element models that simulate the progress of deterioration. The developed models take into consideration the main environmental stressors and determine the extent of capacity loss as a function of time. Based on the degraded state of structural components, seismic fragility analyses are performed to obtain a probabilistic evaluation of the extent of damageability of the existing bridges under seismic events. Since each transportation link normally consists of a number of bridges, the state of damage in the individual bridges is mapped to the corresponding links and a scenario-based approach is employed to estimate the resilience of the entire transportation network. To demonstrate how the consequences of structural degradation can be integrated into the developed framework, the large-scale transportation network of Los Angeles and Orange counties is investigated under a series of aging and earthquake scenarios. The outcome of this study indicates how the estimates associated with the functionality measures of a transportation network can be improved if the age factor is properly integrated into the framework used for resilience assessment.</p></div>","PeriodicalId":101077,"journal":{"name":"Resilient Cities and Structures","volume":"1 2","pages":"Pages 87-96"},"PeriodicalIF":0.0,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772741622000242/pdfft?md5=d093d2cbaa08fb2812cb3288c72b5dde&pid=1-s2.0-S2772741622000242-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77011152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Towards an integrated framework for the risk assessment of coastal structures exposed to earthquake and tsunami hazards","authors":"C. Reis, M. Lopes, M. Baptista, S. Clain","doi":"10.1016/j.rcns.2022.07.001","DOIUrl":"https://doi.org/10.1016/j.rcns.2022.07.001","url":null,"abstract":"","PeriodicalId":101077,"journal":{"name":"Resilient Cities and Structures","volume":"40 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75752674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Resilience of aging structures and infrastructure systems with emphasis on seismic resilience of bridges and road networks: Review","authors":"Luca Capacci , Fabio Biondini , Dan M. Frangopol","doi":"10.1016/j.rcns.2022.05.001","DOIUrl":"https://doi.org/10.1016/j.rcns.2022.05.001","url":null,"abstract":"<div><p>Risk assessment and mitigation programs have been carried out over the last decades in the attempt to reduce transportation infrastructure downtime and post-disaster recovery costs. Recently, the concept of resilience gained increasing importance in design, assessment, maintenance, and rehabilitation structures and infrastructure systems, particularly bridges and transportation networks, exposed to natural and man-made hazards. In the field of disaster mitigation, frameworks have been proposed to provide a basis for development of qualitative and quantitative models quantifying the functionality and resilience at various scales, including components, groups and systems within infrastructure networks and communities. In these frameworks, the effects of aging and environmental aggressiveness must be explicitly considered, affecting the structural performance and functionality of civil infrastructure systems. Significant efforts have been made to incorporate risk and resilience assessment frameworks into informed decision making to decide how to best use resources to minimize the impact of hazards on civil infrastructure systems. This review paper is part of these efforts. It presents an overview of the main principles and concepts, methods and strategies, advances and accomplishments in the field of life-cycle reliability, risk and resilience of structures and infrastructure systems, with emphasis on seismic resilience of bridges and road networks.</p></div>","PeriodicalId":101077,"journal":{"name":"Resilient Cities and Structures","volume":"1 2","pages":"Pages 23-41"},"PeriodicalIF":0.0,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772741622000205/pdfft?md5=2ed945f5ae6a6d5283693720b274f67f&pid=1-s2.0-S2772741622000205-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91683544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rohit Ranjan Singh, Michel Bruneau, Andreas Stavridis, Kallol Sett
{"title":"Resilience deficit index for quantification of resilience","authors":"Rohit Ranjan Singh, Michel Bruneau, Andreas Stavridis, Kallol Sett","doi":"10.1016/j.rcns.2022.06.001","DOIUrl":"https://doi.org/10.1016/j.rcns.2022.06.001","url":null,"abstract":"<div><p>After a brief overview of how the dimensionless resilience index has been calculated in the past for buildings, and some of the shortcomings of that approach, the use of a resilience deficit index is advocated to overcome some of these shortcomings. An example is provided and the pros and cons of each approach are discussed, with broad recommendations applicable to the quantification of building resilience.</p></div>","PeriodicalId":101077,"journal":{"name":"Resilient Cities and Structures","volume":"1 2","pages":"Pages 1-9"},"PeriodicalIF":0.0,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772741622000217/pdfft?md5=c3a9df3fdad61da843c748862e6a1685&pid=1-s2.0-S2772741622000217-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90001258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Seismic design of low-rise steel building frames with self-centering hybrid damping connections","authors":"Junlin Li, Wei Wang","doi":"10.1016/j.rcns.2022.06.002","DOIUrl":"https://doi.org/10.1016/j.rcns.2022.06.002","url":null,"abstract":"","PeriodicalId":101077,"journal":{"name":"Resilient Cities and Structures","volume":"35 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84078955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}