Stringer-panel model to support the seismic design and response verification of building diaphragms

Sergio E. Godínez , José I. Restrepo
{"title":"Stringer-panel model to support the seismic design and response verification of building diaphragms","authors":"Sergio E. Godínez ,&nbsp;José I. Restrepo","doi":"10.1016/j.rcns.2023.02.003","DOIUrl":null,"url":null,"abstract":"<div><p>Diaphragms are essential structural elements of the earthquake-resisting system in a building. Diaphragms are the building slabs subjected to in-plane forces which are transferred to the vertical elements of the earthquake-resisting system. In-plane forces can arise from inertial loads and from self-equilibrating forces caused by the interaction between elements of the vertical earthquake-resisting system of different stiffness. The analysis and design of diaphragms is one of the most challenging tasks in design of buildings nowadays.</p><p>This paper describes a stringer-panel model used as a macro-element for the modeling of building diaphragms in linear and nonlinear time-history analyses. The element was coded in the open-source finite element software OpenSees. The linear version of the element is first used to support the design of diaphragms in a building. Then, the nonlinear response of the diaphragms is assessed with the nonlinear version of the element.</p><p>Key response parameters of diaphragms modeled with the dynamic stringer-panel method in a high-rise building of complex geometry are presented. Results show significant redistribution of internal forces occurs through the diaphragm after cracking, leading to a general reduction of the tensile forces and an increase in the compressive forces. The clear load path, computational stability, efficiency, and highly design-oriented representation of the results of this method make it an attractive alternative for its use in the modeling and design of diaphragms in performance-based seismic design.</p></div>","PeriodicalId":101077,"journal":{"name":"Resilient Cities and Structures","volume":"2 1","pages":"Pages 46-67"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resilient Cities and Structures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772741623000017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Diaphragms are essential structural elements of the earthquake-resisting system in a building. Diaphragms are the building slabs subjected to in-plane forces which are transferred to the vertical elements of the earthquake-resisting system. In-plane forces can arise from inertial loads and from self-equilibrating forces caused by the interaction between elements of the vertical earthquake-resisting system of different stiffness. The analysis and design of diaphragms is one of the most challenging tasks in design of buildings nowadays.

This paper describes a stringer-panel model used as a macro-element for the modeling of building diaphragms in linear and nonlinear time-history analyses. The element was coded in the open-source finite element software OpenSees. The linear version of the element is first used to support the design of diaphragms in a building. Then, the nonlinear response of the diaphragms is assessed with the nonlinear version of the element.

Key response parameters of diaphragms modeled with the dynamic stringer-panel method in a high-rise building of complex geometry are presented. Results show significant redistribution of internal forces occurs through the diaphragm after cracking, leading to a general reduction of the tensile forces and an increase in the compressive forces. The clear load path, computational stability, efficiency, and highly design-oriented representation of the results of this method make it an attractive alternative for its use in the modeling and design of diaphragms in performance-based seismic design.

支撑建筑横隔板抗震设计及响应验证的筋板模型
隔板是建筑抗震体系中必不可少的结构构件。隔板是承受平面内力的建筑板,这些力传递到抗震系统的垂直构件上。平面内的力可能来自惯性载荷和由不同刚度的垂直抗震系统的元件之间的相互作用引起的自平衡力。隔板的分析和设计是当今建筑设计中最具挑战性的任务之一。本文描述了一个桁条面板模型,该模型用作线性和非线性时程分析中建筑物横隔梁建模的宏观单元。该元素在开源有限元软件OpenSees中进行了编码。该元件的线性版本首先用于支持建筑物中隔板的设计。然后,用非线性形式的单元评估膜片的非线性响应。给出了复杂几何高层建筑中采用动态桁条-面板法建模的横隔梁的关键响应参数。结果表明,开裂后,内力通过隔板发生了显著的再分配,导致张力普遍降低,压缩力增加。该方法具有清晰的荷载路径、计算稳定性、效率和高度面向设计的结果表示,使其成为基于性能的抗震设计中用于横隔梁建模和设计的一种有吸引力的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信