Plant Nano Biology最新文献

筛选
英文 中文
Comparing the individual and combined effects of nano zinc and conventional zinc fertilization on growth, yield, phytochemical properties, antioxidant activity, and secoisolariciresinol diglucoside content in linseed 比较纳米锌和传统锌肥对亚麻籽的生长、产量、植物化学特性、抗氧化活性和仲异落叶松脂二葡萄糖苷含量的单独和综合影响
Plant Nano Biology Pub Date : 2024-10-17 DOI: 10.1016/j.plana.2024.100098
Ragini Singh , Peer Saffeullah , Shahid Umar , Sageer Abass , Sayeed Ahmad , Noushina Iqbal
{"title":"Comparing the individual and combined effects of nano zinc and conventional zinc fertilization on growth, yield, phytochemical properties, antioxidant activity, and secoisolariciresinol diglucoside content in linseed","authors":"Ragini Singh ,&nbsp;Peer Saffeullah ,&nbsp;Shahid Umar ,&nbsp;Sageer Abass ,&nbsp;Sayeed Ahmad ,&nbsp;Noushina Iqbal","doi":"10.1016/j.plana.2024.100098","DOIUrl":"10.1016/j.plana.2024.100098","url":null,"abstract":"<div><div>Zinc sulfate (ZnSO<sub>4</sub>), a conventional Zn fertilizer, is widely used due to its high solubility and ease of application. In contrast, nano Zn represents an innovative approach, utilizing nanoscale particles to enhance Zn bioavailability and uptake efficiency. This study compares these two Zn fertilizers regarding their impact on plant growth, yield, Zn uptake, and overall crop quality. In our study, we explored the potential of nano Zn and ZnSO<sub>4</sub> by applying two different doses of each (100, 1000 ppm ZnO NP and 30, 50 kg ha<sup>−1</sup> ZnSO<sub>4</sub>) both individually and in combination, to linseed accession. The results obtained showed the potential of nano Zn over conventional Zn fertilizer in terms of enhanced linseed growth and yield together with greater antioxidants enzyme, oil content, protein content, Zn accumulation, secoisolariciresinol diglucoside (SDG) content, and the accumulation of bioactive metabolites. Nanoscale ZnO (with particle size less than 100 nm) at a 1000 ppm concentration sped up growth, yield, increased SDG content, and antioxidant activity. However, when nano Zn (1000 ppm) was applied in combination with ZnSO<sub>4</sub> (30 kg ha<sup>−1</sup>), it maximally enhanced plant fresh and dry weight, photosynthesis, and yield compared to their individual treatment. The combined application increased seed yield by 4.55 folds compared to the control. The treated plants were assessed for SDG content using liquid chromatography-mass spectrometry analysis (LC-MS), which showed maximum increase with 1000 ppm ZnO NP. SDG is a type of lignan known for their antioxidant properties and potential health benefits paving way for its pharmaceutical importance.</div></div>","PeriodicalId":101029,"journal":{"name":"Plant Nano Biology","volume":"10 ","pages":"Article 100098"},"PeriodicalIF":0.0,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142530304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Opinion: Smart nanofertilizers for growth enhancement and stress resilience in agriculture 意见:智能纳米肥料促进农业生长和抗逆性
Plant Nano Biology Pub Date : 2024-10-17 DOI: 10.1016/j.plana.2024.100095
Ritu Gill , Faheem Ahmed , Gopal Kalwan , Narendra Tuteja , Sarvajeet Singh Gill
{"title":"Opinion: Smart nanofertilizers for growth enhancement and stress resilience in agriculture","authors":"Ritu Gill ,&nbsp;Faheem Ahmed ,&nbsp;Gopal Kalwan ,&nbsp;Narendra Tuteja ,&nbsp;Sarvajeet Singh Gill","doi":"10.1016/j.plana.2024.100095","DOIUrl":"10.1016/j.plana.2024.100095","url":null,"abstract":"<div><div>Smart nanofertilizers (NFs) represent a promising frontier in agricultural technology, offering precise nutrient delivery and stress resilience to enhance crop growth and productivity while minimizing the environmental impact. This opinion article explores the potential of smart NFs in revolutionizing traditional fertilization practices and addressing the challenges facing modern agriculture. By harnessing the unique properties of nanomaterials, smart NFs including noble metal nanoparticles, green NFs, and novel NFs from industrial waste enable targeted nutrient delivery, enhanced nutrient use efficiency, and stress tolerance in plants. However, their widespread adoption faces regulatory, safety, and scalability challenges that require interdisciplinary collaboration and concerted efforts from stakeholders. Despite these hurdles, smart NFs hold immense promise for promoting sustainable agriculture and ensuring food security in frequently changing global climatic conditions.</div></div>","PeriodicalId":101029,"journal":{"name":"Plant Nano Biology","volume":"10 ","pages":"Article 100095"},"PeriodicalIF":0.0,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142530302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interactive effect of biogenic nanoparticles and UV-B exposure on physio-biochemical behavior and secondary metabolism of Artemisia annua L 生物纳米粒子和紫外线-B 暴露对黄花蒿生理生化行为和次生代谢的交互影响
Plant Nano Biology Pub Date : 2024-10-15 DOI: 10.1016/j.plana.2024.100097
Deepika Tripathi , Apoorva , Niraj Kumar Goswami , Shashi Pandey-Rai
{"title":"Interactive effect of biogenic nanoparticles and UV-B exposure on physio-biochemical behavior and secondary metabolism of Artemisia annua L","authors":"Deepika Tripathi ,&nbsp;Apoorva ,&nbsp;Niraj Kumar Goswami ,&nbsp;Shashi Pandey-Rai","doi":"10.1016/j.plana.2024.100097","DOIUrl":"10.1016/j.plana.2024.100097","url":null,"abstract":"<div><div>Biosynthesized silver nanoparticles (AgNPs) are key nanomaterials with unique physio-chemical characteristics and diverse applications. Their strong absorption potential and antibacterial activity make them useful for agriculture, medicine and other industries. AgNPs boost plant growth and metabolism, especially under stress. However, the combined effects of AgNPs and UV-B exposure on plants are unknown. To elucidate the interactive effects of biosynthesized silver nanoparticles (AgNPs) and exposure of ultraviolet B (UV-B) on plant growth and metabolic processes, this study assessed the response of <em>Artemisia annua</em> under controlled <em>in vitro</em> conditions. In total, eight sets of plants were used with the alone/combined treatment of AgNPs and UV-B. For this purpose, spherical and averaged ∼ 31.8 nm in size AaAgNPs were synthesized. The photosynthetic pigments were calculated maximum with the alone treatment of 0.5 mg L<sup>−1</sup> AaAgNPs and combined treatment of 0.5 mg L<sup>−1</sup> AaAgNPs with 3 h UV-B, respectively. The results evidenced that the co-exposure of AaAgNPs and UV-B led to a significant balance in ROS production of <em>A. annua</em>; as well as improved antioxidative enzyme activity. Fluorescence and scanning electron microscopic (SEM) analysis indicated the enhancement of glandular trichomes (GT) area and density with the combined treatment of AaAgNPs and 3 h UV-B. In accordance with correlation between microscopic GT results, high concentration of artemisinin and up-regulation of related transcripts were found in <em>A. annua</em> plants treated with low concentrations of AaAgNPs and UV-B. Thus, it may be inferred that two distinct plant growth modulators, namely low-concentration biosynthesized AgNPs and short-term UV-B exposure, can enhance the physio-biochemical characteristics and production of secondary metabolites (specially artemisinin) in A. annua synergistically.</div></div>","PeriodicalId":101029,"journal":{"name":"Plant Nano Biology","volume":"10 ","pages":"Article 100097"},"PeriodicalIF":0.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142530301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nano-priming: Improving plant nutrition to support the establishment of sustainable agriculture under heavy metal stress 纳米填料:改善植物营养,支持在重金属胁迫下建立可持续农业
Plant Nano Biology Pub Date : 2024-10-11 DOI: 10.1016/j.plana.2024.100096
Mohammad Faizan , Pooja Sharma , Haider Sultan , Pravej Alam , Shafaque Sehar , Vishnu D. Rajput , Shamsul Hayat
{"title":"Nano-priming: Improving plant nutrition to support the establishment of sustainable agriculture under heavy metal stress","authors":"Mohammad Faizan ,&nbsp;Pooja Sharma ,&nbsp;Haider Sultan ,&nbsp;Pravej Alam ,&nbsp;Shafaque Sehar ,&nbsp;Vishnu D. Rajput ,&nbsp;Shamsul Hayat","doi":"10.1016/j.plana.2024.100096","DOIUrl":"10.1016/j.plana.2024.100096","url":null,"abstract":"<div><div>Heavy metals (HMs) have become a severe problem for all living organisms, including plants, because of their unprecedented bioaccumulation and biomagnification in the environment. When exposed to hazardous quantities of HMs, various essential cellular macromolecules, including DNA and nuclear proteins, can interact with HMs, causing an overproduction of reactive oxygen species (ROS). Recently, several techniques have been used to ameliorate HM toxicity, including nano-priming, which effectively modulates plant physiological and biochemical responses under HM stress. This review summarizes the literature on the effectiveness of nano-priming for boosting germination, growth, photosynthetic efficiency, biomass accumulation, and crop yield. Additionally, information regarding the application of nano-priming to reduce HM toxicity in plants is reviewed. Future research prospects are indicated by highlighting the knowledge gaps in the current literature and underlining the need optimize and validate nano-priming techniques and their physiological effects on plants.</div></div>","PeriodicalId":101029,"journal":{"name":"Plant Nano Biology","volume":"10 ","pages":"Article 100096"},"PeriodicalIF":0.0,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142444558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication of cobalt oxide nanosheets using Withania somnifera root extract for degradation of organic pollutants 利用睡茄根提取物制备用于降解有机污染物的氧化钴纳米片
Plant Nano Biology Pub Date : 2024-10-11 DOI: 10.1016/j.plana.2024.100099
Chinky Gangwar , Saloni Sahu , Ritik Jaiswal , Nisha Gangwar , Ashish Soni
{"title":"Fabrication of cobalt oxide nanosheets using Withania somnifera root extract for degradation of organic pollutants","authors":"Chinky Gangwar ,&nbsp;Saloni Sahu ,&nbsp;Ritik Jaiswal ,&nbsp;Nisha Gangwar ,&nbsp;Ashish Soni","doi":"10.1016/j.plana.2024.100099","DOIUrl":"10.1016/j.plana.2024.100099","url":null,"abstract":"<div><div>In today’s scenario, material science emerges as pivotal players, as it is an emerging and fast-growing interdisciplinary field. Nanomaterials are increasingly popular among researchers due to their unique physicochemical properties and multifaceted applications. Recently, researchers are exploring more sustainable approaches for the synthesis of nanomaterials due to its numerous advantages. In this context, present investigation reports an approach for the synthesis of cobalt oxide nanosheets (Co<sub>3</sub>O<sub>4</sub> NSs). This approach leverages environmentally friendly and sustainable methods, minimizing the use of hazardous chemicals and reducing energy consumption. Hence it involved <em>Withania somnifera</em> (ashwagandha) root extract as a greener reductant as well as stabilizing agent. The synthesized Co<sub>3</sub>O<sub>4</sub> NSs were thoroughly analyzed using various techniques, including ultraviolet-visible (UV–vis) spectroscopy, fourier-transform infrared spectroscopy (FTIR), powder x-ray diffraction (PXRD), and field emission scanning electron microscopy (FE-SEM). A sharp absorption peak at 252 nm with a tail towards higher wavelength reveal the formation of Co<sub>3</sub>O<sub>4</sub> NSs. The diffraction pattern reveals a face centered cubic structure of Co<sub>3</sub>O<sub>4</sub> NSs. Morphological studies confirmed the substantial surface area of Co<sub>3</sub>O<sub>4</sub> NSs which enable us to perform the catalytic degradation of azo dye, i.e., methyl orange. It provides that 10 mg of Co<sub>3</sub>O<sub>4</sub> NSs is sufficient to degrade a 10 ppm aqueous methyl orange solution by 75.82 % in the dark and by 96.12 % under sunlight exposure. Thus, this study offers an excellent pathway for the synthesis of Co<sub>3</sub>O<sub>4</sub> NSs and demonstrates their potential as a promising material for future catalytic applications.</div></div>","PeriodicalId":101029,"journal":{"name":"Plant Nano Biology","volume":"10 ","pages":"Article 100099"},"PeriodicalIF":0.0,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142444557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional and transcriptomic insights into plant response to arginine-functionalized nanohydroxyapatite treatment 植物对精氨酸功能化纳米羟基磷灰石处理反应的功能和转录组学见解
Plant Nano Biology Pub Date : 2024-10-09 DOI: 10.1016/j.plana.2024.100093
Chinenye L. Izuegbunam, Beate Wone, Bernard W.M. Wone
{"title":"Functional and transcriptomic insights into plant response to arginine-functionalized nanohydroxyapatite treatment","authors":"Chinenye L. Izuegbunam,&nbsp;Beate Wone,&nbsp;Bernard W.M. Wone","doi":"10.1016/j.plana.2024.100093","DOIUrl":"10.1016/j.plana.2024.100093","url":null,"abstract":"<div><div>The manipulation of the plant genome is essential for elucidating gene functions in plants and advancing the development of climate-resistant crops. We have demonstrated that a nanohydroxyapatite (nHA)-mediated gene delivery system is effective in the transformation of reporter genes into six plant species. Despite the potential advantages of nHA-mediated biomolecule delivery and its application as fertilizers, phytotoxicity concerns necessitate additional studies. While initial findings suggest the beneficial effects of nHA as a nanofertilizer at specific concentrations, a thorough investigation into its bioactivity is warranted. This study reports the bioactivity of nHA on two model plants, including a crop species, and examines the global gene expression alterations in <em>Arabidopsis thaliana</em>. Treatment of seeds and seedlings with arginine-functionalized nHA (R-nHA) at concentrations at 50, 200 and 500 µg/ml led to accelerated germination in <em>Arabidopsis</em>, an effect not observed in <em>Nicotiana benthamiana</em>. Additionally, R-nHA did not affect root growth in either model species but significantly promoted root and leaf growth in <em>Triticum aestivum</em>. Transcriptomic analysis revealed minimal transcriptional changes in <em>Arabidopsis</em> treated with R-nHA compared to a water control, including activated phytohormone signaling pathways and stress-responsive genes. Salicylic acid (SA) has been identified as a pivotal phytohormone in initiating stress resistance in response to R-nHA exposure in <em>Arabidopsis</em>, highlighting its essential role in plant defense mechanisms against both biotic and abiotic stresses. In summary, this study showed that R-nHA accelerates germination and promotes plant growth with minimal transcriptional changes, thereby laying the groundwork for the use of nHA in plant genome manipulations. This research indicates that nHAs are highly biocompatible for plant bionanotechnology applications.</div></div>","PeriodicalId":101029,"journal":{"name":"Plant Nano Biology","volume":"10 ","pages":"Article 100093"},"PeriodicalIF":0.0,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142433077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Elucidation of biochemical and physiological modulations in Triticum aestivum induced by green synthesized nitrogen-enriched zinc nano-complexes 阐明绿色合成富氮纳米锌络合物诱导的小麦生化和生理变化
Plant Nano Biology Pub Date : 2024-10-04 DOI: 10.1016/j.plana.2024.100094
Zari Shiran , Sedigheh Esmaeilzadeh Bahabadi , Zohreh Razmara , Kavitha Beluri , Nusrat Easmin , Amirhossein Mahdaviarab , Hamidreza Sharifan
{"title":"Elucidation of biochemical and physiological modulations in Triticum aestivum induced by green synthesized nitrogen-enriched zinc nano-complexes","authors":"Zari Shiran ,&nbsp;Sedigheh Esmaeilzadeh Bahabadi ,&nbsp;Zohreh Razmara ,&nbsp;Kavitha Beluri ,&nbsp;Nusrat Easmin ,&nbsp;Amirhossein Mahdaviarab ,&nbsp;Hamidreza Sharifan","doi":"10.1016/j.plana.2024.100094","DOIUrl":"10.1016/j.plana.2024.100094","url":null,"abstract":"<div><div>This study investigates the efficacy of a green synthesized nitrogen-rich zinc complex (Zn-NC) using quinoline (C<sub>9</sub>H<sub>7</sub>N) as the nitrogen-rich substrate to enhance growth and biochemical properties in wheat (<em>Triticum aestivum</em>). The performance of Zn-NC was compared to standard zinc oxide nanoparticles (ZnO-NPs). Both Zn-NC and ZnO-NPs were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD), and dynamic light scattering (DLS). Three concentrations (100, 200, and 500 ppm) of each compound, along with a control, were applied to local soil samples (n=3). The physiological (biomass, elongation) and biochemical effects (chlorophyll, carotenoids, flavonoids, and phenols) on wheat were investigated. Potential phytotoxic effects were evaluated to establish the biostimulants' safety thresholds. Plants treated with green Zn-NC showed an average increase in shoot length of 25 % compared to the control group. The chlorophyll content in plants treated with ZnO-NPs increased by 18 %, while those treated with green Zn-NC increased by 12 % compared to control. Application of ZnO-NPs resulted in a 30 % increase in total yield, whereas green Zn-NC treatment led to a 22 % yield increase. The root biomass of plants treated with ZnO-NPs increased by 28 %, and those treated with green Zn-NC saw a 20 % increase compared to controls. Based on the optimization of overall results, the ZnO NPs showed phytotoxic effects at concentrations above 200 ppm, while green Zn-NC exhibited no significant phytotoxicity even at concentrations up to 300 ppm. This study delineates the optimal concentrations of Zn-NC and ZnO-NPs that can enhance nutrient delivery and yield in cereal crops while mitigating phytotoxic risks. The findings provide valuable insights into applying nano-biostimulants in agroecosystems, highlighting their potential to improve productivity and sustainability in agriculture.</div></div>","PeriodicalId":101029,"journal":{"name":"Plant Nano Biology","volume":"10 ","pages":"Article 100094"},"PeriodicalIF":0.0,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142418076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbial Nanotechnology for Plant Science and Agriculture 植物科学与农业微生物纳米技术
Plant Nano Biology Pub Date : 2024-08-01 DOI: 10.1016/j.plana.2024.100088
Hena Dhar, Javaid Akhter Bhat, Ulhas Kadam, Rupesh Deshmukh
{"title":"Microbial Nanotechnology for Plant Science and Agriculture","authors":"Hena Dhar,&nbsp;Javaid Akhter Bhat,&nbsp;Ulhas Kadam,&nbsp;Rupesh Deshmukh","doi":"10.1016/j.plana.2024.100088","DOIUrl":"10.1016/j.plana.2024.100088","url":null,"abstract":"","PeriodicalId":101029,"journal":{"name":"Plant Nano Biology","volume":"9 ","pages":"Article 100088"},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773111124000317/pdfft?md5=afdd7501ebb78c3573724a9713854edd&pid=1-s2.0-S2773111124000317-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141979018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficacy of Cymbopogon khasianus essential oil infused chitosan nanoemulsion for mitigation of Aspergillus flavus and aflatoxin B1 contamination in stored Syzygium cumini seeds 注入壳聚糖纳米乳液的卡氏香茅精油对减轻黄曲霉菌和黄曲霉毒素 B1 在贮藏的茜草种子中的污染的功效
Plant Nano Biology Pub Date : 2024-08-01 DOI: 10.1016/j.plana.2024.100085
Jitendra Prasad , Monisha Soni , Arati Yadav , Kishor Kumar Paul , Manish Kumar Jha , Umakant Banjare , Somenath Das , Nawal Kishore Dubey , Abhishek Kumar Dwivedy
{"title":"Efficacy of Cymbopogon khasianus essential oil infused chitosan nanoemulsion for mitigation of Aspergillus flavus and aflatoxin B1 contamination in stored Syzygium cumini seeds","authors":"Jitendra Prasad ,&nbsp;Monisha Soni ,&nbsp;Arati Yadav ,&nbsp;Kishor Kumar Paul ,&nbsp;Manish Kumar Jha ,&nbsp;Umakant Banjare ,&nbsp;Somenath Das ,&nbsp;Nawal Kishore Dubey ,&nbsp;Abhishek Kumar Dwivedy","doi":"10.1016/j.plana.2024.100085","DOIUrl":"10.1016/j.plana.2024.100085","url":null,"abstract":"<div><p>This research developed a novel chitosan nanoemulsion infused with <em>Cymbopogon khasianus</em> essential oil (CKEO-ChNe) and characterized through Dynamic light scattering, Atomic force microscopy, scanning electron microscopy, fourier transform infrared spectroscopy, and x-ray diffractometry analyses followed by its efficacy testing against fungi and aflatoxin B<sub>1</sub> contamination in <em>Syzygium cumini</em> seeds. The CKEO-ChNe inhibited <em>Aspergillus flavus</em> and aflatoxin B<sub>1</sub> (AFB<sub>1</sub>) production at 0.32 and 0.28 µL/mL with enhanced antioxidant activity and controlled delivery strategies. The inhibition of methylglyoxal and ergosterol biosynthesis, leakage of ions and molecular interaction of geraniol with Ver-1 (Versicolorin A dehydrogenase) and Omt-A (O-methyl transferase) proteins suggested the antifungal and anti-AFB<sub>1</sub> mechanism of action. Further, the <em>in situ</em> protection of <em>Syzygium cumini</em> seeds against fungi, AFB<sub>1</sub> contamination and lipid peroxidation (p&lt;0.05) without altering the sensory characteristics, and favorable safety profile in mammalian model recommend the potentiality of encapsulated CKEO nanoemulsion as smart nano-fungitoxic preservative in agricultural and pharmaceutical industries.</p></div>","PeriodicalId":101029,"journal":{"name":"Plant Nano Biology","volume":"9 ","pages":"Article 100085"},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773111124000287/pdfft?md5=706f8ab3d30db229e95594b129fef168&pid=1-s2.0-S2773111124000287-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141843433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis of calcium-based nanofertilizer and its efficacy towards reduction of oxidative stress and fluoride uptake in rice (Oryza sativa L.) 钙基纳米肥料的合成及其对降低水稻(Oryza sativa L.)氧化应激和氟吸收的功效
Plant Nano Biology Pub Date : 2024-08-01 DOI: 10.1016/j.plana.2024.100087
Rajesh Koley, Naba Kumar Mondal
{"title":"Synthesis of calcium-based nanofertilizer and its efficacy towards reduction of oxidative stress and fluoride uptake in rice (Oryza sativa L.)","authors":"Rajesh Koley,&nbsp;Naba Kumar Mondal","doi":"10.1016/j.plana.2024.100087","DOIUrl":"10.1016/j.plana.2024.100087","url":null,"abstract":"<div><p>The phytotoxicity of fluoride and its build-up in agricultural plants and subsequently the entry into the food chain is a serious threat to human health. The present study highlighted the green synthesis of calcium oxide nanoparticles (CaO NPs) and characterization using UV-Vis spectrophotometer, TEM, SEM, EDX, XRD, and FTIR. Further, synthesized CaO NPs (0, 10, and 50 mg/L) were applied on fluoride-stressed (10 mg/L) rice seedlings to check its possible ameliorative effects towards growth and fluoride accumulation in different parts of rice seedlings. Characterization revealed that nanoparticles were crystalline (46.72 %) and spherical in shape, with an average diameter of 20–25 nm. Results of the seedling growth analysis revealed that CaO NPs inhibited the translocation of fluoride in rice plants, which in turn decreased the phytotoxicity caused by fluoride, including lipid peroxidation and chlorosis, and enhanced the overall growth of seedlings. The co-exposure of CaO NPs with fluoride also showed a reduction in the fluoride-induced oxidative stress, as demonstrated by lower MDA, O<sub>2</sub><sup>•-</sup> contents, and activity of antioxidant enzymes (CAT, SOD, and POD) as compared to fluoride treatment alone. The application of CaO NPs also restored potassium content in seedlings grown under fluoride stress. Furthermore, the highest reduction of fluoride accumulation by 65 and 76 % in roots and shoots was recorded at 50 mg/L of CaO NPs treatment, respectively. Therefore, the present study clearly indicated the ameliorative potential of CaO NPs towards fluoride stress in rice. However, a field study is needed to establish the social acceptance of this valuable nanofertilizer in fluoride-contaminated areas.</p></div>","PeriodicalId":101029,"journal":{"name":"Plant Nano Biology","volume":"9 ","pages":"Article 100087"},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773111124000305/pdfft?md5=75f30dc28a1e2e8b46ebf93906cce32f&pid=1-s2.0-S2773111124000305-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141850439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信