Plant Nano Biology最新文献

筛选
英文 中文
Nanoemulsion edible coating for shelf-life improvement and quality control in perishable products 用于改善易腐产品货架期和质量控制的纳米乳液食用涂层
Plant Nano Biology Pub Date : 2024-11-01 DOI: 10.1016/j.plana.2024.100114
Diksha Thakur , Paki Rana , Shailesh Kumar Singh , Manish Bakshi , Sanjeev Kumar , Sanjay Singh
{"title":"Nanoemulsion edible coating for shelf-life improvement and quality control in perishable products","authors":"Diksha Thakur ,&nbsp;Paki Rana ,&nbsp;Shailesh Kumar Singh ,&nbsp;Manish Bakshi ,&nbsp;Sanjeev Kumar ,&nbsp;Sanjay Singh","doi":"10.1016/j.plana.2024.100114","DOIUrl":"10.1016/j.plana.2024.100114","url":null,"abstract":"<div><div>The perishable nature of a wide range of food commodities including horticultural produce is a challenge to global food and nutritional security and a hindrance in the target of zero hunger by 2030 (The United Nations Sustainable Development Goals). Nanoemulsion edible coating is an emerging technique for creating lipophilic active ingredient delivery systems to facilitate their integration with edible coatings applied over perishable horticultural produce. The current review provides insight into the formulation techniques, characteristics, stability, and application of nanoemulsion edible coatings to improve the quality and shelf-life of perishable horticultural produce. The nanoemulsion coatings on fruits and vegetables are analogous to modified atmosphere packaging, as these coatings create physical barriers to alter the gaseous exchange between the fruit’s internal and external atmosphere, increase the CO<sub>2</sub> concentration, lower the O<sub>2</sub> concentration, and reduce the respiration rate. The nanoscale droplets in the emulsion increase the surface area, allowing for improved coverage of the food surface and improving the barrier to prevent moisture loss, microbiological contamination, and oxidative deterioration and extending the freshness of fruits, vegetables, and other perishable foods. The nanoemulsion-based edible packaging/coating has the potential to revolutionize the food business by addressing issues such as food waste, sustainability, and consumer demand for healthier and longer-lasting products.</div></div>","PeriodicalId":101029,"journal":{"name":"Plant Nano Biology","volume":"10 ","pages":"Article 100114"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142698542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effective chitosan-antioxidant treatments for extending cassava shelf-life evaluated using silver nanosensor 利用纳米银传感器评估壳聚糖-抗氧化剂处理延长木薯货架期的效果
Plant Nano Biology Pub Date : 2024-11-01 DOI: 10.1016/j.plana.2024.100115
Adetoun Akitoye , Greatness Olaitan , Isaac Akinbulu , Wesley Okiei
{"title":"Effective chitosan-antioxidant treatments for extending cassava shelf-life evaluated using silver nanosensor","authors":"Adetoun Akitoye ,&nbsp;Greatness Olaitan ,&nbsp;Isaac Akinbulu ,&nbsp;Wesley Okiei","doi":"10.1016/j.plana.2024.100115","DOIUrl":"10.1016/j.plana.2024.100115","url":null,"abstract":"<div><div>Cassava is a highly resilient and versatile root crop that plays a crucial role in food security across many tropical regions. However, its short postharvest shelf-life results in significant losses, highlighting the need for effective strategies to extend its longevity. This study introduces a novel approach to monitoring and mitigating cassava deterioration by utilizing silver nanoparticle sensors to track hydrogen peroxide (H₂O₂) production, a key indicator of oxidative stress. Four economically viable cassava root cultivars were evaluated for their tolerance to postharvest physiological deterioration (PPD) and quality retention after treatment with various chitosan-antioxidant formulations. The results indicated that the chitosan-quercetin formulation (CS-Q) was the most effective, achieving the lowest average H₂O₂ reduction of 67.7 % compared to untreated samples, followed by chitosan-beta-carotene (CS-BC) at 62.4 %, chitosan-ascorbic acid (CS-AA) at 38.3 %, and chitosan (CS) at 34.8 %. These reductions in H₂O₂ suggest that chitosan-antioxidant treatments can effectively delay PPD and extend cassava's shelf life for up to six months, depending on the cultivar, seasonal factors, and specific antioxidant composition. The successful implementation of this innovation offers a promising solution to delay PPD and enhance the efficiency of the cassava supply chain. Furthermore, this study contributes to the advancement of electrochemical techniques for assessing PPD and demonstrates the potential of chitosan-based materials in improving the postharvest preservation of cassava and potentially other crops.</div></div>","PeriodicalId":101029,"journal":{"name":"Plant Nano Biology","volume":"10 ","pages":"Article 100115"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142722197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of silver nanochitosan in protecting wheat seeds from fungal infection and increasing growth parameters 纳米壳聚糖银对保护小麦种子免受真菌感染和提高生长参数的影响
Plant Nano Biology Pub Date : 2024-11-01 DOI: 10.1016/j.plana.2024.100116
Divya Chouhan , Palash Mandal , Chandrani Choudhuri , Piyush Mathur
{"title":"Impact of silver nanochitosan in protecting wheat seeds from fungal infection and increasing growth parameters","authors":"Divya Chouhan ,&nbsp;Palash Mandal ,&nbsp;Chandrani Choudhuri ,&nbsp;Piyush Mathur","doi":"10.1016/j.plana.2024.100116","DOIUrl":"10.1016/j.plana.2024.100116","url":null,"abstract":"<div><div>Wheat is regarded as the prime source of dietary carbohydrate, protein in the majority of countries all over the world. Wheat growth, productivity and seed quality has been extensively hampered by the aggression of seed-borne pathogens during post-harvest storage. The present work focus on the efficacy of chitosan-based Ag<sup>2+</sup> nanoparticles (Ag-CNPs) for the management of seed borne pathogens of wheat and their subsequent effects on growth, yield, and quality of harvested seeds. For this, healthy seeds of wheat were nanoprimed with Ag-CNPs and further inoculated with <em>A. flavus</em> so as to induce pathogenic stress. These seeds were sown in pots in a completely randomized block design and plants were raised from both nanoprimed and inoculated seeds, while plants were also raised from non-nanoprimed primed and uninoculated that served as control. Nanoprimed and pathogen inoculated seeds effectively increased vegetative growth such as (132.31 %), fresh weight (1.63-fold), dry weight (1.67-fold), and panicle length (137.03 %). and amplified the number of grains per spike, harvest index, ten kernel weight, and yield/plant, despite of pathogenic interference. Concomitantly, Ag-CNPs nano-priming enhances the harvested seed quality raised from pathogen inoculated seeds plants. The integrated density of the bands obtained in SDS-PAGE of variedly primed seeds revealed that Ag-CNP priming improved wheat's total protein profiling with a denser band intensity. The antioxidant enzymatic activity of CAT, POD, SOD, and NOX was traced maximum in Ag-CNPs primed seeds by 13.52, 7.90, 26.6 and 16.08 units, respectively. Thus, it can be concluded that nano priming with Ag-CNPs mitigated the wheat seeds from pathogenic stress and efficiently increased yield parameters and quality of harvested seeds.</div></div>","PeriodicalId":101029,"journal":{"name":"Plant Nano Biology","volume":"10 ","pages":"Article 100116"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142698550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Harnessing the potential of zinc oxide nanoparticles and their derivatives as nanofertilizers: Trends and perspectives 利用氧化锌纳米粒子及其衍生物作为纳米肥料的潜力:趋势与前景
Plant Nano Biology Pub Date : 2024-11-01 DOI: 10.1016/j.plana.2024.100110
Saad Hanif , Rabia Javed , Mumtaz Cheema , Misbah Zeb Kiani , Snovia Farooq , Muhammad Zia
{"title":"Harnessing the potential of zinc oxide nanoparticles and their derivatives as nanofertilizers: Trends and perspectives","authors":"Saad Hanif ,&nbsp;Rabia Javed ,&nbsp;Mumtaz Cheema ,&nbsp;Misbah Zeb Kiani ,&nbsp;Snovia Farooq ,&nbsp;Muhammad Zia","doi":"10.1016/j.plana.2024.100110","DOIUrl":"10.1016/j.plana.2024.100110","url":null,"abstract":"<div><div>The agriculture sector is currently facing a decline in plant productivity and yield. Different technologies are being developed to combat these risks. However, innovation in existing technologies is required. Nanotechnology has the potential to solve these difficulties by modifying traditional farming practices and approaches. Nanoparticles (NPs) can bind and transport various substances, such as plant nutrients, and govern their slow release over a longer period, which can reduce the danger of nutrient losses while maintaining environmental safety. In this aspect, the role of zinc oxide nanoparticles (ZnO NPs) and their derivatives in agriculture has recently sparked a lot of interest. ZnO NPs can be coated with different compounds which enhance their biocompatibility within the plant cells. The unique nanostructures and nano-characteristics of ZnO NPs and their derivatives have resulted in the development of a novel approach for boosting plant development and productivity as well as improved stress tolerance via targeted delivery and slow-release mechanism, resulting in enhanced nutrient use efficiency, regulating phytohormone levels, enhancing root morphology, and increasing enzyme activity, leading to their application as nanofertilizers. There are important knowledge gaps regarding the long-term environmental consequences and the specific biochemical pathways influenced by ZnO NPs. This review aims to provide an overview of the most recent advancements in the use of ZnO NPs in agriculture, identify areas where more research is needed, and suggest potential future research directions.</div></div>","PeriodicalId":101029,"journal":{"name":"Plant Nano Biology","volume":"10 ","pages":"Article 100110"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142651189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Green approaches for the synthesis of silver nanoparticle and its augmentation in Seed. germination, growth, and antioxidant level in Capsicum annuum L. 银纳米粒子的绿色合成及其在种子中的增效作用。
Plant Nano Biology Pub Date : 2024-11-01 DOI: 10.1016/j.plana.2024.100107
Kiran Suresh Mawale , Parvatam Giridhar
{"title":"Green approaches for the synthesis of silver nanoparticle and its augmentation in Seed. germination, growth, and antioxidant level in Capsicum annuum L.","authors":"Kiran Suresh Mawale ,&nbsp;Parvatam Giridhar","doi":"10.1016/j.plana.2024.100107","DOIUrl":"10.1016/j.plana.2024.100107","url":null,"abstract":"<div><div><strong>Eco</strong>-friendly natural nano-compounds, including biological extracts from <em>Aspergillus niger, Azadirachta indica</em>, and <em>Moringa oleifera</em> are known for their efficacy. Silver nanoparticles (AgNPs) improve seed germination, plant growth, and photosynthetic efficiency. This study focuses on how bio-silver may affect the development and physiology of <em>Capsicum annuum</em> L., specifically bio-silver nano priming with different quantities of synthesised nanoparticles. Nano priming improved seed germination (90–100 %), seedling length (53 %), seedling weight (75 %), seedling vigour index (65 %), as well as germination speed and index. The phytochemicals significantly increased chlorophyll (6–145 %), carotenoids (19–138 %), TPC (12–74 %), and TFC (7–80 %), all of which support plant growth. Nano priming also enhanced TAA (7–67 %) and FRAP (7–57 %). The total protein content (18–111 %) increased, promoting enzyme activity and plant development. Nano-priming increased ROS generation in seedlings more than the control and other priming treatments. This indicates that both ROS, including SOD (2–36 %) and POD (2–72 %), play crucial roles in seedling growth. The various mechanisms involved in nano priming-induced ROS/antioxidant systems in seedlings, such as the production of proline content (7–154 %) and the decrease in MDA (1–15 %), all contribute to the regulation of nanoparticle-generated stress.</div></div>","PeriodicalId":101029,"journal":{"name":"Plant Nano Biology","volume":"10 ","pages":"Article 100107"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Opinion: Nanotechnology and agriculture in the tropical region: The perspective of the National Institute of Science and Technology in Brazil 观点:热带地区的纳米技术和农业:巴西国家科学技术研究所的观点
Plant Nano Biology Pub Date : 2024-11-01 DOI: 10.1016/j.plana.2024.100103
Halley C. Oliveira , Adriano A. Melo , Leonardo F. Fraceto
{"title":"Opinion: Nanotechnology and agriculture in the tropical region: The perspective of the National Institute of Science and Technology in Brazil","authors":"Halley C. Oliveira ,&nbsp;Adriano A. Melo ,&nbsp;Leonardo F. Fraceto","doi":"10.1016/j.plana.2024.100103","DOIUrl":"10.1016/j.plana.2024.100103","url":null,"abstract":"<div><div>Agriculture in the tropics plays a fundamental role in producing food, feed and fiber for the world due to the diversity of production possibilities. However, despite its productive potential, there are many demands for technologies, whether for improving plant growth and development, monitoring field conditions, protecting plants from adverse climatic conditions, or pest control. Nanotechnology can assist in integrated crop management through different applications (e.g., nanosensors for pest monitoring and controlled-release nanoformulations of agrochemicals and biostimulants), thus bringing benefits to tropical agriculture. In this context, the creation of institutes with an interdisciplinary focus, such as the recently created National Institute of Science and Technology in Nanotechnology for Sustainable Agriculture in Brazil, can bring advantages through carrying out research and development, as well as transfer of technology for society, thus contributing to sustainable agriculture.</div></div>","PeriodicalId":101029,"journal":{"name":"Plant Nano Biology","volume":"10 ","pages":"Article 100103"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143150418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interaction of nanoparticles and reactive oxygen species and their impact on macromolecules and plant production 纳米粒子与活性氧的相互作用及其对大分子和植物生产的影响
Plant Nano Biology Pub Date : 2024-10-28 DOI: 10.1016/j.plana.2024.100105
Sina Fallah , Elham Yusefi-Tanha , Jose R. Peralta-Videa
{"title":"Interaction of nanoparticles and reactive oxygen species and their impact on macromolecules and plant production","authors":"Sina Fallah ,&nbsp;Elham Yusefi-Tanha ,&nbsp;Jose R. Peralta-Videa","doi":"10.1016/j.plana.2024.100105","DOIUrl":"10.1016/j.plana.2024.100105","url":null,"abstract":"<div><div>Nanoparticles (NPs) have emerged as a potent tool for enhancing crop growth and improving agricultural output in the face of global population expansion. However, their application can induce an oxidative state in plants, impacting crop yield. This review evaluates the impact of NPs on the production of reactive oxygen species (ROS), macromolecules, and overall plant performance. Primarily, one of their key effects is the induction of oxidative stress in plants, which alters cellular function and defense mechanisms. Excessive ROS can harm cellular components resulting in cell death. Thus, preserving a delicate equilibrium between ROS production and scavenging is pivotal for cellular redox status. Although high NP concentrations can be detrimental, lower levels can contribute positively to cellular functions and signaling by generating low levels of ROS. Consequently, it is crucial to employ appropriate nanoparticle concentrations to uphold this balance and enhance plant productivity.</div></div>","PeriodicalId":101029,"journal":{"name":"Plant Nano Biology","volume":"10 ","pages":"Article 100105"},"PeriodicalIF":0.0,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142539063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transforming plant tissue culture with nanoparticles: A review of current applications 用纳米颗粒改造植物组织培养:当前应用综述
Plant Nano Biology Pub Date : 2024-10-22 DOI: 10.1016/j.plana.2024.100102
M.D.K.M. Gunasena , A.M.P.D. Alahakoon , K.P.G.D.M. Polwaththa , G.D.C.P. Galpaya , H.A.S.A. Priyanjani , K.R. Koswattage , W.T.P.S.K. Senarath
{"title":"Transforming plant tissue culture with nanoparticles: A review of current applications","authors":"M.D.K.M. Gunasena ,&nbsp;A.M.P.D. Alahakoon ,&nbsp;K.P.G.D.M. Polwaththa ,&nbsp;G.D.C.P. Galpaya ,&nbsp;H.A.S.A. Priyanjani ,&nbsp;K.R. Koswattage ,&nbsp;W.T.P.S.K. Senarath","doi":"10.1016/j.plana.2024.100102","DOIUrl":"10.1016/j.plana.2024.100102","url":null,"abstract":"<div><div>The integration of nanotechnology into plant tissue culture represents a significant advancement in agricultural biotechnology. This review explores the transformative potential of nanoparticles in enhancing various processes within plant tissue culture. This review discussed how nanoparticles improve micropropagation efficiency by reducing contaminations, improving callus induction and increasing yields of secondary metabolites through cell suspension cultures. Additionally, the positive effects of nanoparticles on organogenesis, somatic embryogenesis, protoplast cultures and somaclonal variations are reviewed. Various types of nanoparticles, including silver, gold, zinc, cobalt, silica, and carbon-based nanoparticles, are analyzed for their specific applications and mechanisms of action. However, the potential toxicity of nanoparticles and their impact on plant health and the environment are critical concerns that are also reviewed. This comprehensive review provides insights into current applications, advantages and challenges of nanoparticle use in plant tissue culture, emphasizing the need for further research to optimize these innovative approaches for sustainable agricultural practices.</div></div>","PeriodicalId":101029,"journal":{"name":"Plant Nano Biology","volume":"10 ","pages":"Article 100102"},"PeriodicalIF":0.0,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142530300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Utilizing Arthrospira platensis for the fabrication of zinc oxide nanoparticles: Analysis and assessment for enhancing drought tolerance in Sub1A QTL bearing rice seedlings 利用节肢动物制造纳米氧化锌颗粒:分析和评估提高Sub1A QTL水稻秧苗的抗旱能力
Plant Nano Biology Pub Date : 2024-10-19 DOI: 10.1016/j.plana.2024.100101
Abir Das , Sayanti Bagchi , Sayan Pal , Anway Ganguly , Sudipta Kumar Sil , Malay Kumar Adak
{"title":"Utilizing Arthrospira platensis for the fabrication of zinc oxide nanoparticles: Analysis and assessment for enhancing drought tolerance in Sub1A QTL bearing rice seedlings","authors":"Abir Das ,&nbsp;Sayanti Bagchi ,&nbsp;Sayan Pal ,&nbsp;Anway Ganguly ,&nbsp;Sudipta Kumar Sil ,&nbsp;Malay Kumar Adak","doi":"10.1016/j.plana.2024.100101","DOIUrl":"10.1016/j.plana.2024.100101","url":null,"abstract":"<div><div>In the present study, the underlying pathways for zinc oxide nanoparticles (ZnO-NPs) mediated modulation of oxidative stress under drought were evaluated in rice seedlings. Principally, rice cultivar (cv. Swarna Sub1) was used to assess the potential of the <em>Sub1A</em> QTL for its drought sensitivity in response to bio-fabricated ZnO-NPs. ZnO-NPs were synthesized from algal (<em>Arthrospira platensis</em>) extract and characterized for their opto-physical properties, confirming size (54 nm), hydrodynamicity (-18.54), amorphous-cubic shape and others features. Fifteen-day-old rice seedlings were primed with 25 ppm ZnO-NPs and exposed to 12 % polyethylene glycol (PEG) mediated drought stress (DS) for 7-days under laboratory conditions. Primarily, <em>Sub1A</em> QTL responded to drought-induced anoxic stress with a significant increase in the activities of alcohol dehydrogenase (447.41 %) and pyruvate decarboxylase (96.51 %) through ZnO-NPs sensitization. Plants recorded a significant reduction in root growth, which regained 89.25 % with ZnO-NPs treatments. ZnO-NPs also recovered relative water content (49 %), proline (99.2 %), and improved chlorophyll fluorescence (90.9 %) under stress. Furthermore, drought-induced membrane leakage was stabilized by reducing ionic conductivity through the distribution of wall-bound polyamines. A characteristic feature of fluorescence also reinforced the sustenance of photosynthetic activities by ZnO-NPs under drought. Alternatively, rice seedlings showed regulation of oxidative stress, where lipid peroxidation and protein carbonylation were reduced by 270 % and 178.2 %, respectively. This was observed with the minimization of superoxide and hydrogen peroxide concentrations by regulating apoplastic oxidase activity (117.64 %) with distinct polymorphisms in proteins. These observations suggest that ZnO-NPs can ameliorate drought-induced oxidative stress in rice, providing insights for improved nano-fertigation.</div></div>","PeriodicalId":101029,"journal":{"name":"Plant Nano Biology","volume":"10 ","pages":"Article 100101"},"PeriodicalIF":0.0,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142530303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanomaterials as tools in plant transformation: A protoplast-centric perspective 作为植物转化工具的纳米材料:以原生质体为中心的视角
Plant Nano Biology Pub Date : 2024-10-18 DOI: 10.1016/j.plana.2024.100100
Zhila Osmani , Lipu Wang , Wei Xiao , Marianna Kulka
{"title":"Nanomaterials as tools in plant transformation: A protoplast-centric perspective","authors":"Zhila Osmani ,&nbsp;Lipu Wang ,&nbsp;Wei Xiao ,&nbsp;Marianna Kulka","doi":"10.1016/j.plana.2024.100100","DOIUrl":"10.1016/j.plana.2024.100100","url":null,"abstract":"<div><div>Genetic engineering of plants can boost disease resistance, enhance crop traits, and ultimately improve agricultural productivity. Several approaches to plant bioengineering have been successful in recent decades. Nanomaterials (NMs) can be customized and fabricated with targeting capabilities, making them well-suited for bioengineering applications. These NMs include organic, inorganic, and composite materials with many different structures, including nanofibers, nanoparticles (NPs), and nanomembranes. Protoplasts are often used as target cells because they lack a cell wall and are more likely to endocytose NM. In this review, the efficacy of NMs in delivering genetic material to protoplasts is examined. The challenges associated with protoplast generation and optimization of protocols for transformation are explored and the possible advantages of NMs in this process are identified. The chemical properties of these NMs in relation to their potency is briefly discussed. Ultimately, this technology is evolving and our understanding of NMs and the requirement for migration through the cellular membrane is still missing several key pieces of information. The next decades will likely produce important new insights that will have important impacts in this field.</div></div>","PeriodicalId":101029,"journal":{"name":"Plant Nano Biology","volume":"10 ","pages":"Article 100100"},"PeriodicalIF":0.0,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142530299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信