{"title":"Integration of graphene quantum dots with 3D scaffolds for precision medicine and regenerative applications","authors":"Yuvaraj Muthu, Meenaloshini Gopalakrishnan, Prabakaran Sankar, Elizabeth Rani Edwin, Karthikeyan Elumalai","doi":"10.1016/j.ntm.2025.100095","DOIUrl":"10.1016/j.ntm.2025.100095","url":null,"abstract":"<div><div>Integrated onto three-dimensional (3D) scaffolds, graphene quantum dots (GQDs) present a novel method for tissue creation and precision drug delivery. Among its special characteristics are photoluminescence, biocompatibility, and a large surface area fit for functionalizing. Targeting drug delivery, tissue regeneration, and diagnostic capability, GQD-functionalized 3D scaffolds provide. This review discusses the synthesis, characteristics, and functionalizing techniques of GQD-functionalized 3D scaffolds to achieve desired delivery. GQD-functionalized 3D scaffolds underscore their possible use by means of synergistic effects in cancer treatment, tissue engineering, wound healing, and chronic illness management. Even with real-time medication release and therapeutic effect monitoring allowed, GQD-functionalized 3D scaffolds can provide chemotherapeutic drugs, nucleic acids, and proteins to tumor locations. In tissue engineering, GQD-functionalized scaffolds help cells in proliferation, differentiation, and neovascularization. Moreover, GQD-functionalized 3D scaffolds speed wound healing and help avoid infections. GQD-functionalized 3D scaffolds indicate a promising method for continuous medicine administration and tissue regeneration for chronic diseases, including diabetes, cardiovascular diseases, and neurodegenerative diseases. Still, there are somewhat typical issues with long-term safety, mass production, and regulatory approval. Green synthesis methods, better functionalizing methods, and design-based stimuli-responsive scaffolds are among the future directions. Clinical application of this technology depends totally on cooperative efforts of material scientists, biomedical engineers, medical practitioners, and regulatory authorities. Depending on continuous development, GQD-functionalized 3D scaffold technology presents enormous possibilities to transform medicine delivery and regeneration.</div></div>","PeriodicalId":100941,"journal":{"name":"Nano TransMed","volume":"4 ","pages":"Article 100095"},"PeriodicalIF":0.0,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145095169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nano TransMedPub Date : 2025-09-09DOI: 10.1016/j.ntm.2025.100097
Aeshah M. Mohammed , Mohammed Mohammed , Jawad K. Oleiwi , Falah H. Ihmedee , Tijjani Adam , Bashir O. Betar , Subash C.B. Gopinath
{"title":"The anticancer, antioxidant, and antimicrobial properties of zinc oxide nanoparticles: A comprehensive review","authors":"Aeshah M. Mohammed , Mohammed Mohammed , Jawad K. Oleiwi , Falah H. Ihmedee , Tijjani Adam , Bashir O. Betar , Subash C.B. Gopinath","doi":"10.1016/j.ntm.2025.100097","DOIUrl":"10.1016/j.ntm.2025.100097","url":null,"abstract":"<div><div>This review provides a comprehensive analysis of Zinc Oxide Nanoparticles (ZnO NPs) in biomedical applications, focusing on their anticancer, antioxidant, and antimicrobial properties. ZnO NPs, distinguished by their unique physicochemical attributes, are increasingly recognized in nanomedicine for their potential in cancer therapy, oxidative stress management, and infection control. The synthesis and characterization of ZnO NPs, crucial for their functionality and safety, are discussed, emphasizing the impact of particle size, morphology, and purity. ZnO NPs exhibit promising capabilities in oncology through reactive oxygen species generation, apoptosis induction, and anti-proliferative effects. Their efficacy against diverse cancer types and insights from emerging clinical trials are evaluated. The review also highlights the antioxidant properties of ZnO NPs, comparing their effectiveness with conventional antioxidants and their role in combating oxidative stress-related diseases, supported by case studies. The antimicrobial potential of ZnO NPs is explored through their interaction with microbial cell structures and the generation of reactive oxygen species, demonstrating their broad-spectrum efficacy against bacteria, fungi, and viruses. Applications in healthcare and infection control are discussed. Furthermore, the review addresses biocompatibility and toxicity concerns, covering in vitro and in vivo studies, factors influencing toxicity, and regulatory perspectives. Challenges in clinical applications, including delivery systems and translational research obstacles, are examined. Finally, the review outlines future prospects, such as emerging research trends, potential in combined therapies, and advancements in nanotechnology, concluding with the pivotal role of ZnO NPs in advancing therapeutic solutions and their promising future in healthcare.</div></div>","PeriodicalId":100941,"journal":{"name":"Nano TransMed","volume":"4 ","pages":"Article 100097"},"PeriodicalIF":0.0,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145095168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nanocarrier-based insulin delivery: A leap towards a needle-free future","authors":"Saranya Balasubramaniyam, Thirumalaikumaran Rathinam, Mohanakrishnan Srinivasan, Sowmiya Jayarani","doi":"10.1016/j.ntm.2025.100093","DOIUrl":"10.1016/j.ntm.2025.100093","url":null,"abstract":"<div><div>The burden of diabetes mellitus continues to escalate globally, demanding innovative and patient-centric therapeutic alternatives to conventional insulin injections. Nanocarrier-based drug delivery systems offer transformative potential in diabetes management by enabling needle-free, targeted, and sustained insulin administration. This review not only explores the cutting-edge landscape of nanocarriers—liposomes, polymeric nanoparticles, dendrimers, micelles, and nanoemulsions—but also uniquely integrates clinical trial outcomes, molecular mechanisms, and novel applications such as CRISPR-based gene therapy and dietary extracellular vesicles (ELVs). These platforms shield insulin from enzymatic breakdown, enable oral or transdermal delivery, and provide controlled release to simulate physiological insulin profiles. Future uses encompass gene-loaded nanocarriers for regenerating pancreatic beta cells and intelligent nanocarriers integrated with biosensors for real-time glucose-responsive insulin release. This union opens the way for self-directed diabetes management with minimal patient interaction. Albeit promising, problems like potential toxicity, financial impediments, and regulatory issues have to be solved through collaborative efforts involving interdisciplinary inputs. Notably, the coupling of nanocarrier technology with wearable technology and personalized medicine techniques signals a shift in diabetes care paradigms. With maturity in research, these smart systems might not only obviate the need for syringe dependence but also redefine treatment by merging bioengineering, diagnostics, and regenerative strategies. Nanomedicine's role is poised to shift diabetes care from symptom management to functional cure, with global implications for improving patient quality of life.</div></div>","PeriodicalId":100941,"journal":{"name":"Nano TransMed","volume":"4 ","pages":"Article 100093"},"PeriodicalIF":0.0,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144887326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nano TransMedPub Date : 2025-07-11DOI: 10.1016/j.ntm.2025.100092
Jie Wu, Xiangdong Xue, Haijing Qu
{"title":"Tumor microenvironment-responsive nanoplatforms for enhanced cancer immunotherapy: Advances and synergistic strategies","authors":"Jie Wu, Xiangdong Xue, Haijing Qu","doi":"10.1016/j.ntm.2025.100092","DOIUrl":"10.1016/j.ntm.2025.100092","url":null,"abstract":"<div><div>Despite remarkable advancements in cancer immunotherapy, its clinical efficacy remains constrained by challenges including insufficient tumor accumulation of immunotherapeutics, limited patient response rates, and immune-related adverse events. Tumor microenvironment (TME)-responsive nanoplatforms have emerged as a promising strategy to address these limitations, which could respond to endogenous signals in tumor cells to achieve precise targeting, controlled drug release, and reversal of tumor immunosuppressive microenvironments. Herein, this article systematically reviews TME-responsive design strategies based on intrinsic tumor-specific features, including acidic pH, elevated reactive oxygen species (ROS) levels, reductive conditions, hypoxia, and overexpressed enzymes. Furthermore, we elucidate synergistic mechanisms of TME-responsive nanosystems empowering immunotherapy: i) subcellular organelle-specific delivery, ii) TME remodeling, iii) immunometabolic reprogramming and iv) lymph node drainage regulation. Finally, the current challenges and future directions for clinical translation of these advanced nanomedicine-based immunotherapeutic strategies are discussed, providing insights for the development of next-generation cancer immunotherapies.</div></div>","PeriodicalId":100941,"journal":{"name":"Nano TransMed","volume":"4 ","pages":"Article 100092"},"PeriodicalIF":0.0,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144632627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"In-silico strategies in nano-drug design: Bridging nanomaterials and pharmacological applications","authors":"Nagarjuna Prakash Dalbanjan , Karuna Korgaonkar , Manjunath P. Eelager , Basavaraj Neelappa Gonal , Arihant Jayawant Kadapure , Suresh B. Arakera , Praveen Kumar S.K.","doi":"10.1016/j.ntm.2025.100091","DOIUrl":"10.1016/j.ntm.2025.100091","url":null,"abstract":"<div><div>Rapid advancements in nanotechnology have transformed drug design and delivery systems, allowing for precise and efficient therapeutic interventions. This review examines the transformative role of in-silico approaches in nano-drug design, focusing on their ability to predict, optimize, and refine nanomaterial properties for pharmacological applications. Key computational tools such as molecular modelling, machine learning, computational fluid dynamics, and bioinformatics are thoroughly investigated, with a focus on their contributions to understanding drug loading, toxicity, targeting strategies, and nano-bio interactions. Furthermore, the incorporation of emerging technologies like digital twins and quantum computing shows the potential to overcome current limitations in accuracy, scalability, and personalization. Despite significant progress, challenges remain, particularly in closing the gap between computational predictions and experimental validations, dealing with data quality issues, and navigating regulatory frameworks. This review emphasizes the importance of interdisciplinary collaboration and innovation in realizing the full potential of in-silico methods for advancing nanotherapeutics. Addressing these challenges positions the field to accelerate the development of safe, effective, and personalized medicines.</div></div>","PeriodicalId":100941,"journal":{"name":"Nano TransMed","volume":"4 ","pages":"Article 100091"},"PeriodicalIF":0.0,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144604762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nano TransMedPub Date : 2025-07-03DOI: 10.1016/j.ntm.2025.100090
Jiahui Wu , Gege Zhang , Mi Zou , Qiong Huang , Yanling Zhang , Yajie Sui , Shuang Wu , Jianming Yang , Qiaojun Fang , Pingping Liang
{"title":"“Green” gas-generation strategy to combine cancer phototherapy for remarkably enhanced efficacy","authors":"Jiahui Wu , Gege Zhang , Mi Zou , Qiong Huang , Yanling Zhang , Yajie Sui , Shuang Wu , Jianming Yang , Qiaojun Fang , Pingping Liang","doi":"10.1016/j.ntm.2025.100090","DOIUrl":"10.1016/j.ntm.2025.100090","url":null,"abstract":"<div><div>Phototherapy, which mainly includes photodynamic therapy (PDT) and photothermal therapy (PTT), has made considerable progress in the field of cancer treatment by generating reactive oxygen species or hyperthermia under photorespiration to selectively damage cancer cells. However, PDT or PTT monotherapy still needs to overcome the respective limitations for biosafety and efficacy improvement. Gas therapy, especially guided by photoacoustic imaging, is an emerging therapeutic approach that destroys cancer cells by increasing the levels of certain gases at the tumor site, wherein some gas molecules can not only increase the O<sub>2</sub> level by cellular respiration inhibition and nanoparticles accumulation by controlled release but also inhibit HSP expression and hyperthermia-induced inflammation. Hence, combining various gases with phototherapy and hyperthermia-induced photoacoustic imaging to achieve superlatively superimposed therapeutic outcomes has received increasing attention due to its unique biological functions. In this review, gas molecular monotherapy is initially summarized, followed by a comprehensive overview of the latest research advances in gas-assisted phototherapy or photoacoustic imaging, finally exploring the prospects and challenges of gas therapy to fight cancer. Recent research advances are summarized, providing innovative perspectives on the design of cancer phototherapy or photoacoustic imaging combined with gas therapy to further improve the therapeutic outlook.</div></div>","PeriodicalId":100941,"journal":{"name":"Nano TransMed","volume":"4 ","pages":"Article 100090"},"PeriodicalIF":0.0,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144656473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Redox-sensitive camptothecin prodrug: A promising drug delivery strategy with ultrahigh drug loading and tunable drug release","authors":"Shiwei Fu , Vanessa Puche , Bowen Zhao , Xiao Zhang , Victoria A.A. McKenzie , Sophia Garcia , Fuwu Zhang","doi":"10.1016/j.ntm.2025.100088","DOIUrl":"10.1016/j.ntm.2025.100088","url":null,"abstract":"<div><div>Small molecular drugs play a critical role in cancer therapy but face challenges like poor solubility, severe side effects, and inefficient delivery. Polymeric micellar-based drug delivery systems show promise but struggle with low drug loading, instability, and premature drug release partly due to the incompatible physicochemical properties. Here, we report a simple and efficient method to develop redox-sensitive camptothecin (CPT) prodrug by conjugating alkyl chains to CPT via a disulfide linker. By conjugating alkyl chains of varying lengths to CPT via a disulfide linker, we achieved high drug-loading efficiency and loading capacity, controlled responsive drug release, due to enhanced hydrophobic interaction and miscibility with the carrier. The prodrug loaded NPs exhibited slower drug release for more hydrophobic ones with longer alky chains. In vitro cytotoxicity assays against cancer cells confirmed the prodrugs' potency and the critical role of the disulfide bond in maintaining anticancer activity. These findings highlight the importance of tuning prodrug hydrophobicity and GSH sensitivity in drug delivery. This prodrug engineering strategy, which involves conjugating a hydrophobic alkyl chain to modulate the drug's physicochemical properties, offers a straightforward approach for designing and optimizing drug delivery systems for a wide range of therapeutic agents, whether hydrophilic or hydrophobic.</div></div>","PeriodicalId":100941,"journal":{"name":"Nano TransMed","volume":"4 ","pages":"Article 100088"},"PeriodicalIF":0.0,"publicationDate":"2025-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144107772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mitigating oxidative stress toxicities of environmental pollutants by antioxidant nanoformulations","authors":"Hamieh Goshtasbi , Nastaran Hashemzadeh , Marziyeh Fathi , Ali Movafeghi , Jaleh Barar , Yadollah Omidi","doi":"10.1016/j.ntm.2025.100087","DOIUrl":"10.1016/j.ntm.2025.100087","url":null,"abstract":"<div><div>Oxidative stress arising from reactive oxygen and nitrogen species (RONS) imposes a severe threat to living organisms by causing extensive cellular and subcellular damage. Environmental pollutants (e.g., xenoestrogens, pesticides, heavy metals, and polycyclic aromatic hydrocarbons) further amplify RONS generation, disrupting mitochondrial function and triggering chronic inflammation. Mitochondrial dysfunction not only hinders energy metabolism but also facilitates the release of pro-apoptotic factors (e.g., cytochrome c), ultimately leading to programmed cell death. Consequently, heightened oxidative stress and mitochondrial impairment are key contributors to a range of chronic illnesses, including metabolic, cardiovascular, endocrine, reproductive, neurodegenerative diseases like Alzheimer’s disease, and cancer. While exogenous antioxidants have shown potential in neutralizing RONS and alleviating oxidative damage, clinical applications are hampered by poor bioavailability, instability, and limited cellular uptake. Antioxidant nanoformulations, particularly those employing biodegradable lipidic and polymeric nanocarriers, offer a promising strategy to address these challenges. Formulated nanoscale delivery systems and bioengineered nanocarriers have been developed for the delivery of antioxidants, which have enhanced antioxidant stability and targeted delivery, and improved therapeutic outcomes. This review discusses the latest advances in nanocarrier-based antioxidant therapies, emphasizing their capacity to mitigate toxicities induced by environmental pollutants and oxidative stress, ultimately opening new prospects for disease management and preventive healthcare.</div></div>","PeriodicalId":100941,"journal":{"name":"Nano TransMed","volume":"4 ","pages":"Article 100087"},"PeriodicalIF":0.0,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144098843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Plant-based nanotherapeutics: A new frontier in disease management and prevention","authors":"Sumitha Elayaperumal , Yuvaraj Sivamani , Parth Agarwal , Nimmy Srivastava","doi":"10.1016/j.ntm.2025.100086","DOIUrl":"10.1016/j.ntm.2025.100086","url":null,"abstract":"<div><div>Nanotechnology has emerged as a transformative force in the field of medicine, offering innovative solutions for the diagnosis, treatment, and prevention of diseases. Among the myriad sources of nanomaterials, plant-based nanotherapeutics stand out due to their biocompatibility, eco-friendliness, and potential for sustainable production. These nanomaterials show promise across a range of diseases, demonstrating significant anticancer activity and potent antimicrobial properties against bacterial, viral, and fungal infections. Additionally, their applications in managing diabetes, reducing inflammation, and promoting wound healing highlight their versatility and effectiveness. Despite challenges such as scaling up nanoparticle production, ensuring stability, and creating standardized regulatory frameworks, the future of plant-based nanotherapeutics is promising. As the field advances, plant-based nanotherapeutics have the potential to transform healthcare by providing more effective, safe, and eco-friendly treatment options. This review article delves into the burgeoning field of plant-based nanotherapeutics, highlighting their mechanisms of action, and diverse applications in disease treatment.</div></div>","PeriodicalId":100941,"journal":{"name":"Nano TransMed","volume":"4 ","pages":"Article 100086"},"PeriodicalIF":0.0,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143928144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}