纳米药物设计中的硅策略:桥接纳米材料和药理学应用

Nagarjuna Prakash Dalbanjan , Karuna Korgaonkar , Manjunath P. Eelager , Basavaraj Neelappa Gonal , Arihant Jayawant Kadapure , Suresh B. Arakera , Praveen Kumar S.K.
{"title":"纳米药物设计中的硅策略:桥接纳米材料和药理学应用","authors":"Nagarjuna Prakash Dalbanjan ,&nbsp;Karuna Korgaonkar ,&nbsp;Manjunath P. Eelager ,&nbsp;Basavaraj Neelappa Gonal ,&nbsp;Arihant Jayawant Kadapure ,&nbsp;Suresh B. Arakera ,&nbsp;Praveen Kumar S.K.","doi":"10.1016/j.ntm.2025.100091","DOIUrl":null,"url":null,"abstract":"<div><div>Rapid advancements in nanotechnology have transformed drug design and delivery systems, allowing for precise and efficient therapeutic interventions. This review examines the transformative role of in-silico approaches in nano-drug design, focusing on their ability to predict, optimize, and refine nanomaterial properties for pharmacological applications. Key computational tools such as molecular modelling, machine learning, computational fluid dynamics, and bioinformatics are thoroughly investigated, with a focus on their contributions to understanding drug loading, toxicity, targeting strategies, and nano-bio interactions. Furthermore, the incorporation of emerging technologies like digital twins and quantum computing shows the potential to overcome current limitations in accuracy, scalability, and personalization. Despite significant progress, challenges remain, particularly in closing the gap between computational predictions and experimental validations, dealing with data quality issues, and navigating regulatory frameworks. This review emphasizes the importance of interdisciplinary collaboration and innovation in realizing the full potential of in-silico methods for advancing nanotherapeutics. Addressing these challenges positions the field to accelerate the development of safe, effective, and personalized medicines.</div></div>","PeriodicalId":100941,"journal":{"name":"Nano TransMed","volume":"4 ","pages":"Article 100091"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-silico strategies in nano-drug design: Bridging nanomaterials and pharmacological applications\",\"authors\":\"Nagarjuna Prakash Dalbanjan ,&nbsp;Karuna Korgaonkar ,&nbsp;Manjunath P. Eelager ,&nbsp;Basavaraj Neelappa Gonal ,&nbsp;Arihant Jayawant Kadapure ,&nbsp;Suresh B. Arakera ,&nbsp;Praveen Kumar S.K.\",\"doi\":\"10.1016/j.ntm.2025.100091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Rapid advancements in nanotechnology have transformed drug design and delivery systems, allowing for precise and efficient therapeutic interventions. This review examines the transformative role of in-silico approaches in nano-drug design, focusing on their ability to predict, optimize, and refine nanomaterial properties for pharmacological applications. Key computational tools such as molecular modelling, machine learning, computational fluid dynamics, and bioinformatics are thoroughly investigated, with a focus on their contributions to understanding drug loading, toxicity, targeting strategies, and nano-bio interactions. Furthermore, the incorporation of emerging technologies like digital twins and quantum computing shows the potential to overcome current limitations in accuracy, scalability, and personalization. Despite significant progress, challenges remain, particularly in closing the gap between computational predictions and experimental validations, dealing with data quality issues, and navigating regulatory frameworks. This review emphasizes the importance of interdisciplinary collaboration and innovation in realizing the full potential of in-silico methods for advancing nanotherapeutics. Addressing these challenges positions the field to accelerate the development of safe, effective, and personalized medicines.</div></div>\",\"PeriodicalId\":100941,\"journal\":{\"name\":\"Nano TransMed\",\"volume\":\"4 \",\"pages\":\"Article 100091\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano TransMed\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2790676025000226\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano TransMed","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2790676025000226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

纳米技术的快速进步已经改变了药物设计和输送系统,允许进行精确和有效的治疗干预。这篇综述探讨了计算机方法在纳米药物设计中的变革作用,重点是它们预测、优化和改进纳米材料特性以用于药理学应用的能力。关键的计算工具,如分子建模,机器学习,计算流体动力学和生物信息学进行了深入的研究,重点是他们对理解药物负荷,毒性,靶向策略和纳米生物相互作用的贡献。此外,数字孪生和量子计算等新兴技术的结合显示出克服当前在准确性、可扩展性和个性化方面限制的潜力。尽管取得了重大进展,但挑战仍然存在,特别是在缩小计算预测和实验验证之间的差距,处理数据质量问题以及导航监管框架方面。这篇综述强调了跨学科合作和创新的重要性,以实现在推进纳米治疗的硅方法的全部潜力。解决这些挑战使该领域能够加速开发安全、有效和个性化的药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In-silico strategies in nano-drug design: Bridging nanomaterials and pharmacological applications
Rapid advancements in nanotechnology have transformed drug design and delivery systems, allowing for precise and efficient therapeutic interventions. This review examines the transformative role of in-silico approaches in nano-drug design, focusing on their ability to predict, optimize, and refine nanomaterial properties for pharmacological applications. Key computational tools such as molecular modelling, machine learning, computational fluid dynamics, and bioinformatics are thoroughly investigated, with a focus on their contributions to understanding drug loading, toxicity, targeting strategies, and nano-bio interactions. Furthermore, the incorporation of emerging technologies like digital twins and quantum computing shows the potential to overcome current limitations in accuracy, scalability, and personalization. Despite significant progress, challenges remain, particularly in closing the gap between computational predictions and experimental validations, dealing with data quality issues, and navigating regulatory frameworks. This review emphasizes the importance of interdisciplinary collaboration and innovation in realizing the full potential of in-silico methods for advancing nanotherapeutics. Addressing these challenges positions the field to accelerate the development of safe, effective, and personalized medicines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信