{"title":"Outside Back Cover: Volume 3 Issue 4","authors":"","doi":"10.1002/idm2.12208","DOIUrl":"https://doi.org/10.1002/idm2.12208","url":null,"abstract":"<p><b>Outside Back Cover</b>: In the review of doi:10.1002/idm2.12177, we discussed the principle and electrochemistry of sodium-sulfur (Na-S) batteries and analyzed the critical role of heterostructured materials in addressing the inherent challenges faced by Na-S batteries. The cover image highlighted the two keywords of <b>Na-S BATTERY</b> and <b>HETEROSTRUCTURE</b> and showcased the relationship between them.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"3 4","pages":"iv"},"PeriodicalIF":24.5,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12208","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141730130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Outside Front Cover: Volume 3 Issue 4","authors":"","doi":"10.1002/idm2.12205","DOIUrl":"https://doi.org/10.1002/idm2.12205","url":null,"abstract":"<p><b>Outside Front Cover</b>: The study in doi:10.1002/idm2.12170 investigates the effect of stabilizing the metastable phase on thermoelectric performance of GeSe by manipulating the chemical bonding mechanisms. This image illustrates the transformation of chemical bonding mechanism from covalent bonding to metavalent bonding and the corresponding phase transition from a stable orthorhombic to a metastable rhombohedral phase. The metastable phase demonstrates excellent thermoelectric performance, which can improve the conversion efficiency of thermoelectric device. High-performance thermoelectric devices have potential applications in chip heat-management systems and as power supply systems (RTGs) for longterm space exploration projects.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"3 4","pages":"i"},"PeriodicalIF":24.5,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12205","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141730128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Facile synthesis of Pt clusters decorated TiO2 nanoparticles for efficient photocatalytic degradation of antibiotics","authors":"Yin Pan, Weizhen Liang, Zongpeng Wang, Junjie Gong, Yichao Wang, Aijiao Xu, Zhenyuan Teng, Shijie Shen, Lin Gu, Wenwu Zhong, Hongsheng Lu, Baofu Chen","doi":"10.1002/idm2.12203","DOIUrl":"10.1002/idm2.12203","url":null,"abstract":"<p>TiO<sub>2</sub> has attracted much attention in the field of photocatalytic degradation of antibiotics due to its good photostability, nontoxicity, and low cost. However, the rapid recombination of photogenerated carriers limits the further improvement of its photocatalytic activity. Here, a facile microwave-assisted hydrothermal method has been developed to prepare Pt clusters decorated TiO<sub>2</sub> nanoparticles. Pt clusters ranging in size from 1 to 2 nm are uniformly distributed across the surface of the TiO<sub>2</sub> matrix. A pronounced charge transfer phenomenon is discernible between the Pt and TiO<sub>2</sub> components. It is revealed that the charge transfer enables faster transfer and separation of photogenerated electrons and holes, which are beneficial for the improvement of photocatalytic degradation of both ofloxacin and levofloxacin. The degradation capability can be attributed to the efficient generation of •OH or •O<sub>2</sub><sup>−</sup> species within the solution. The parallel adsorption model of TiO<sub>2</sub> on antibiotic molecules is verified, and the degradation reaction pathway has been elucidated. This work provides a facile method for optimizing the performance of TiO<sub>2</sub> photocatalysts, which can be extended to other oxide photocatalysts.</p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"3 6","pages":"935-945"},"PeriodicalIF":24.5,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12203","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141830492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Interface strengthening for carbon fiber-reinforced poly(ether-ether-ketone) laminated composites by introducing fluorene-containing branched poly(aryl-ether-ketone)","authors":"Zheng Liu, Xuerong Fan, Xinghan Lu, Xuetao Shi, Junliang Zhang, Hua Guo, Mukun He, Junwei Gu","doi":"10.1002/idm2.12200","DOIUrl":"10.1002/idm2.12200","url":null,"abstract":"<p>Fluorene-containing branched poly(aryl-ether-ketone) (BFPAEK) with terminal hydroxyl groups is synthesized by random copolycondensation reaction; then, the CF@BFPAEK/PEEK laminated composite is prepared by the “powder impregnation-high temperature compression molding” method with poly(ether-ether-ketone) (PEEK) as the matrix and BFPAEK-modified carbon fiber (CF@BFPAEK) as the reinforcement. When the content of branched units in BFPAEK is 10% and the coating amount of BFPAEK on the carbon fiber (CF) surface is 3 wt%, the CF@BFPAEK/PEEK laminated composite has outstanding mechanical properties, with an interlaminar shear strength (ILSS) of 57.3 MPa and flexural strength of 589.4 MPa, which are 80.2% and 44.3% higher than those of the pure CF/PEEK laminated composite (31.8 and 408.4 MPa), respectively. After 288 h of hydrothermal aging and high/low-temperature alternating aging, the corresponding retention rate of ILSS and flexural strength are respectively 87.9% and 84.7%, higher than those of pure CF/PEEK laminated composites (74.5% and 70.4%). The thermal conductivity coefficient and temperature for 5% weight loss of CF@BFPAEK/PEEK laminated composite are 1.85 W m<sup>−1</sup> K<sup>−1</sup> and 538.0°C, respectively.</p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"3 6","pages":"919-934"},"PeriodicalIF":24.5,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12200","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141830074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Atypical artificial cells: Novel biomimetic materials for combating cancer","authors":"Zhao-yang Ren, Qian-qian Wan, Yi-na Zhu, Ling Li, Kai-yan Wang, Fei Zhao, Kai Jiao, Michelle Tang, Franklin Tay, Mei-chen Wan, Li-na Niu","doi":"10.1002/idm2.12199","DOIUrl":"10.1002/idm2.12199","url":null,"abstract":"<p>The functional concept of using synthetic entities to supplement or replace certain functions or structures of biological cells is realized by the development of atypical artificial cells using a bottom-up approach. Tremendous progress has been achieved over the past 5 years that focuses on the therapeutic applications of atypical artificial cells, especially in the anticancer arena. Artificial cell-based anticancer strategies have demonstrated eminent advantages over conventional anticancer tactics, with excellent biocompatibility and targeting capability. The present review commences with introducing the constructing principles and classification of artificial cells. Artificial cell-based applications in cancer prophylaxis, diagnosis, and treatment are subsequently highlighted. These stimulating outcomes may inspire the development of next-generation anticancer therapeutic strategies.</p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"3 5","pages":"658-714"},"PeriodicalIF":24.5,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12199","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141828058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Oxygenated carbon nitride-based high-energy-density lithium-metal batteries","authors":"Mengnan Shen, Ying Wei, Man Ge, Shengdong Yu, Ronghui Dou, Liuhua Chen, Feng Wang, Yunhui Huang, Henghui Xu","doi":"10.1002/idm2.12201","DOIUrl":"10.1002/idm2.12201","url":null,"abstract":"<p>Lithium (Li)-metal batteries with polymer electrolytes are promising for high-energy-density and safe energy storage applications. However, current polymer electrolytes suffer either low ionic conductivity or inadequate ability to suppress Li dendrite growth at high current densities. This study addresses both issues by incorporating two-dimensional oxygenated carbon nitride (2D OCN) into a polyvinylidene fluoride (PVDF)-based composite polymer electrolyte and modifying the Li anode with OCN. The OCN nanosheets incorporated PVDF electrolyte exhibits a high ionic conductivity (1.6 × 10<sup>−4</sup> S cm<sup>−1</sup> at 25°C) and Li<sup>+</sup> transference number (0.62), wide electrochemical window (5.3), and excellent fire resistance. Furthermore, the OCN-modified Li anode in situ generates a protective layer of Li<sub>3</sub>N during cycling, preventing undesirable reactions with PVDF electrolyte and effectively suppressing Li dendrite growth. Symmetric cells using the upgraded PVDF polymer electrolyte and modified Li anode demonstrate long cycling stability over 2500 h at 0.1 mA cm<sup>−2</sup>. Full cells with a high-voltage LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> cathode exhibit high energy density and long-term cycling stability, even at a high loading of 8.2 mg cm<sup>−2</sup>. Incorporating 2D OCN nanosheets into the PVDF-based electrolyte and Li-metal anode provides an effective strategy for achieving safe and high-energy-density Li-metal batteries.</p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"3 5","pages":"791-800"},"PeriodicalIF":24.5,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12201","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141662431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qiong Liu, Xudan Liu, Linfeng Fan, Xinna Bai, Hao Pan, Hang Luo, Dou Zhang, Haitao Huang, Chris R. Bowen
{"title":"Ferroelectric catalytic BaTiO3-based composite insoles to promote healing of infected wounds: Analysis of antibacterial efficacy and angiogenesis","authors":"Qiong Liu, Xudan Liu, Linfeng Fan, Xinna Bai, Hao Pan, Hang Luo, Dou Zhang, Haitao Huang, Chris R. Bowen","doi":"10.1002/idm2.12194","DOIUrl":"https://doi.org/10.1002/idm2.12194","url":null,"abstract":"<p>Our feet are often subjected to moist and warm environments, which can promote the growth of harmful bacteria and the development of severe infection in wounds located in the foot. As a result, there is a need for new and innovative strategies to safely sterilize feet, when shoes are worn, to prevent any potential foot-related diseases. In this paper, we have produced a non-destructive, biocompatible and convenient-to-use insole by embedding a BaTiO<sub>3</sub> (BT) ferroelectric material into a conventional polydimethylsilane (PDMS) insole material to exploit a ferroelectric catalytic effect to promote the antibacterial and healing of infected wounds via the ferroelectric charges generated during walking. The formation of reactive oxygen species generated through a ferroelectric catalytic effect in the PDMS-BT composite is shown to increase the oxidative stress on bacteria and decrease both the activity of bacteria and the rate of formation of bacterial biofilms. In addition, the ferroelectric field generated by the PDMS-BT insole can enhance the level of transforming growth factor-beta and CD31 by influencing the endogenous electric field of a wound, thereby promoting the proliferation, differentiation of fibroblasts and angiogenesis. This work therefore provides a new route for antimicrobial and tissue reconstruction by integrating a ferroelectric biomaterial into a shoe insole, with significant potential for health-related applications.</p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"3 5","pages":"757-774"},"PeriodicalIF":24.5,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12194","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142170325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaoxue Lin, Zeping Ou, Xuewei Wang, Can Wang, Yunfei Ouyang, Ibrahim M. Mwakitawa, Feng Li, Rui Chen, Yaru Yue, Jihe Tang, Wei Fang, Shanshan Chen, Bing Guo, Jianyong Ouyang, Tatyana Shumilova, Yongli Zhou, Liang Wang, Chengwu Zhang, Kuan Sun
{"title":"Self-adhesive and biocompatible dry electrodes with conformal contact to skin for epidermal electrophysiology","authors":"Xiaoxue Lin, Zeping Ou, Xuewei Wang, Can Wang, Yunfei Ouyang, Ibrahim M. Mwakitawa, Feng Li, Rui Chen, Yaru Yue, Jihe Tang, Wei Fang, Shanshan Chen, Bing Guo, Jianyong Ouyang, Tatyana Shumilova, Yongli Zhou, Liang Wang, Chengwu Zhang, Kuan Sun","doi":"10.1002/idm2.12198","DOIUrl":"https://doi.org/10.1002/idm2.12198","url":null,"abstract":"<p>Long-term biopotential monitoring requires high-performance biocompatible wearable dry electrodes. But currently, it is challenging to establish a form-preserving fit with the skin, resulting in high interface impedance and motion artifacts. This research aims to present an innovative solution using an all-green organic dry electrode that eliminates the aforementioned challenges. The dry electrode is prepared by introducing biocompatible maltitol into the chosen conductive polymer, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate). Thanks to the secondary doping and plasticizer effect of maltitol, the dry electrode exhibits good stretchability (62%), strong self-adhesion (0.46 N/cm), high conductivity (102 S/cm), and low Young's modulus (7 MPa). It can always form a conformal contact with the skin even during body movements. Together with good electrical properties, the electrode enables a lower skin contact impedance compared to the current standard Ag/AgCl gel electrode. Consequently, the application of this dry electrode in bioelectrical signal measurement (electromyography, electrocardiography, electroencephalography) and long-term biopotential monitoring was successfully demonstrated.</p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"3 5","pages":"775-790"},"PeriodicalIF":24.5,"publicationDate":"2024-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12198","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142170289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xingge Yu, Mazaher Gholipourmalekabadi, Xudong Wang, Changyong Yuan, Kaili Lin
{"title":"Three-dimensional bioprinting biphasic multicellular living scaffold facilitates osteochondral defect regeneration","authors":"Xingge Yu, Mazaher Gholipourmalekabadi, Xudong Wang, Changyong Yuan, Kaili Lin","doi":"10.1002/idm2.12181","DOIUrl":"10.1002/idm2.12181","url":null,"abstract":"<p>Due to tissue lineage variances and the anisotropic physiological characteristics, regenerating complex osteochondral tissues (cartilage and subchondral bone) remains a great challenge, which is primarily due to the distinct requirements for cartilage and subchondral bone regeneration. For cartilage regeneration, a significant amount of newly generated chondrocytes is required while maintaining their phenotype. Conversely, bone regeneration necessitates inducing stem cells to differentiate into osteoblasts. Additionally, the construction of the osteochondral interface is crucial. In this study, we fabricated a biphasic multicellular bioprinted scaffold mimicking natural osteochondral tissue employing three-dimensional (3D) bioprinting technology. Briefly, gelatin-methacryloyl (GelMA) loaded with articular chondrocytes and bone marrow mesenchymal stem cells (ACs/BMSCs), serving as the cartilage layer, preserved the phenotype of ACs and promoted the differentiation of BMSCs into chondrocytes through the interaction between ACs and BMSCs, thereby facilitating cartilage regeneration. GelMA/strontium-substituted xonotlite (Sr-CSH) loaded with BMSCs, serving as the subchondral bone layer, regulated the differentiation of BMSCs into osteoblasts and enhanced the secretion of cartilage matrix by ACs in the cartilage layer through the slow release of bioactive ions from Sr-CSH. Additionally, GelMA, serving as the matrix material, contributed to the reconstruction of the osteochondral interface. Ultimately, this biphasic multicellular bioprinted scaffold demonstrated satisfactory simultaneous regeneration of osteochondral defects. In this study, a promising strategy for the application of 3D bioprinting technology in complex tissue regeneration was proposed.</p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"3 5","pages":"738-756"},"PeriodicalIF":24.5,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12181","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141274019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Guanjie Wang, Erpeng Wang, Zefeng Li, Jian Zhou, Zhimei Sun
{"title":"Exploring the mathematic equations behind the materials science data using interpretable symbolic regression","authors":"Guanjie Wang, Erpeng Wang, Zefeng Li, Jian Zhou, Zhimei Sun","doi":"10.1002/idm2.12180","DOIUrl":"https://doi.org/10.1002/idm2.12180","url":null,"abstract":"<p>Symbolic regression (SR), exploring mathematical expressions from a given data set to construct an interpretable model, emerges as a powerful computational technique with the potential to transform the “black box” machining learning methods into physical and chemistry interpretable expressions in material science research. In this review, the current advancements in SR are investigated, focusing on the underlying theories, fundamental flowcharts, various techniques, implemented codes, and application fields. More predominantly, the challenging issues and future opportunities in SR that should be overcome to unlock the full potential of SR in material design and research, including graphics processing unit acceleration and transfer learning algorithms, the trade-off between expression accuracy and complexity, physical or chemistry interpretable SR with generative large language models, and multimodal SR methods, are discussed.</p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"3 5","pages":"637-657"},"PeriodicalIF":24.5,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12180","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142170341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}