Tailoring Hydrogen Storage Materials Kinetics and Thermodynamics Through Nanostructuring, and Nanoconfinement With In-Situ Catalysis

IF 24.5 Q1 CHEMISTRY, PHYSICAL
Darvaish Khan, Wee-Jun Ong
{"title":"Tailoring Hydrogen Storage Materials Kinetics and Thermodynamics Through Nanostructuring, and Nanoconfinement With In-Situ Catalysis","authors":"Darvaish Khan,&nbsp;Wee-Jun Ong","doi":"10.1002/idm2.12234","DOIUrl":null,"url":null,"abstract":"<p>For a clean and sustainable society, there is an urgent demand for renewable energy with net-zero emissions due to fossil fuels limited resources and irreversible environmental impact. Hydrogen has the unrivaled potential to replace fossil fuels due to its high gravimetric energy density, abundant sources (H<sub>2</sub>O), and environmental friendliness. However, its low volumetric energy density causes significant challenges, inspiring major efforts to develop chemical-based storage alternatives. Solid-state hydrogen storage in materials has substantial potential for fulfilling the practical requirements and is recognized as a potential candidate due to their properties tuning more independently. However, hydrogen's stable thermodynamics and sluggish kinetics are the bottleneck to its widespread applications. To explore the kinetic and thermodynamic barriers in the fundamentals of hydrogen storage materials, this review will provide promising information for researchers to gain detailed knowledge about hydrogen storage energy applications and find new routes for materials engineering with tuned properties. This will further attract a wider scientific community and intend to understand the innovative concepts and strategies developed and to employ them in tailoring hydrogen storage materials' kinetic and thermodynamic properties. Recent advances in nanostructuring, nanoconfinement with in situ catalysts, and host/guest stress/strain engineering have the potential to propel the prospects of tailoring the hydrogen storage materials properties at the nanoscale with several promising directions and strategies that could lead to the next generation of solid-state hydrogen storage practical applications.</p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"4 2","pages":"249-283"},"PeriodicalIF":24.5000,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12234","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Materials","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/idm2.12234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

For a clean and sustainable society, there is an urgent demand for renewable energy with net-zero emissions due to fossil fuels limited resources and irreversible environmental impact. Hydrogen has the unrivaled potential to replace fossil fuels due to its high gravimetric energy density, abundant sources (H2O), and environmental friendliness. However, its low volumetric energy density causes significant challenges, inspiring major efforts to develop chemical-based storage alternatives. Solid-state hydrogen storage in materials has substantial potential for fulfilling the practical requirements and is recognized as a potential candidate due to their properties tuning more independently. However, hydrogen's stable thermodynamics and sluggish kinetics are the bottleneck to its widespread applications. To explore the kinetic and thermodynamic barriers in the fundamentals of hydrogen storage materials, this review will provide promising information for researchers to gain detailed knowledge about hydrogen storage energy applications and find new routes for materials engineering with tuned properties. This will further attract a wider scientific community and intend to understand the innovative concepts and strategies developed and to employ them in tailoring hydrogen storage materials' kinetic and thermodynamic properties. Recent advances in nanostructuring, nanoconfinement with in situ catalysts, and host/guest stress/strain engineering have the potential to propel the prospects of tailoring the hydrogen storage materials properties at the nanoscale with several promising directions and strategies that could lead to the next generation of solid-state hydrogen storage practical applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信