{"title":"Machine Learning for the Control and Monitoring of Electric Machine Drives: Advances and Trends","authors":"Shen Zhang;Oliver Wallscheid;Mario Porrmann","doi":"10.1109/OJIA.2023.3284717","DOIUrl":"https://doi.org/10.1109/OJIA.2023.3284717","url":null,"abstract":"This review article systematically summarizes the existing literature on utilizing machine learning (ML) techniques for the control and monitoring of electric machine drives. It is anticipated that with the rapid progress in learning algorithms and specialized embedded hardware platforms, ML-based data-driven approaches will become standard tools for the automated high-performance control and monitoring of electric drives. In addition, this article also provides some outlook toward promoting its widespread application in the industry with a focus on deploying ML algorithms onto embedded system-on-chip field-programmable gate array devices.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"4 ","pages":"188-214"},"PeriodicalIF":0.0,"publicationDate":"2023-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782707/10008994/10147346.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50352167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniel Dos Santos Mota;Joseph Kiran Banda;Ayotunde Adekunle Adeyemo;Elisabetta Tedeschi
{"title":"Harmonic-Invariant Scaling Method for Power Electronic Converters in Power Hardware-in-the-Loop Test Beds","authors":"Daniel Dos Santos Mota;Joseph Kiran Banda;Ayotunde Adekunle Adeyemo;Elisabetta Tedeschi","doi":"10.1109/OJIA.2023.3266882","DOIUrl":"https://doi.org/10.1109/OJIA.2023.3266882","url":null,"abstract":"Power hardware-in-the-loop (PHIL) is an experimental technique that uses power amplifiers and real-time simulators for studying the dynamics of power electronic converters and electrical grids. Power hardware-in-the-loop (PHIL) tests provide the means for functional validation of advanced control algorithms without the burden of building high-power prototypes during early technology readiness levels. However, replicating the behavior of high-power systems with laboratory scaled-down converters (SDCs) can be complex. Inaccurate scaling of the SDCs coupled with an exclusive focus on instantaneous voltages and currents at the fundamental frequency can lead to PHIL results that are only partially relatable to the high-power systems under study. Test beds that fail to represent switching frequency harmonics cannot be used for studying harmonic penetration or loss characterization of large-scale converters. To tackle this issue, this article proposes a harmonic-invariant scaling method that exploits the volt-ampere rating of preexisting laboratory SDCs for more accurately replicating harmonic phenomena in a PHIL test bench. First, a theoretical analysis of the proposed method is presented and, subsequently, the method is validated with MATLAB simulations and experimental tests.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"4 ","pages":"139-148"},"PeriodicalIF":0.0,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782707/10008994/10101823.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50350794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Juan Domínguez-Jiménez;Nilson Henao;Kodjo Agbossou;Alejandro Parrado;Javier Campillo;Shaival H. Nagarsheth
{"title":"A Stochastic Approach to Integrating Electrical Thermal Storage in Distributed Demand Response for Nordic Communities With Wind Power Generation","authors":"Juan Domínguez-Jiménez;Nilson Henao;Kodjo Agbossou;Alejandro Parrado;Javier Campillo;Shaival H. Nagarsheth","doi":"10.1109/OJIA.2023.3264651","DOIUrl":"https://doi.org/10.1109/OJIA.2023.3264651","url":null,"abstract":"Demand response and distributed energy storage play a crucial role in improving the efficiency and reliability of electric grids. This article describes a strategy for optimally integrating distributed energy storage units within a forward market to address space heating demand under a Stackelberg game in isolated microgrids. The proposed strategy performs distributed management in an offline fashion through proximal decomposition methods. It leverages stochastic programming to consider user flexibility degree and wind power generation uncertainties. Also, flexibility for demand response is realized through electric thermal storage (ETS). The performance of the proposed strategy is evaluated via simulation studies carried out through a case study in Kuujjuaq, Quebec. Ten residential agents compose the demand side, each with flexibility levels and economic preferences. The simulation results show that adapting ETS results in economic savings for the customers. Those benefits increased in the presence of wind power, from 25% to 40% on average. Likewise, coordinated strategies led the coordinator to obtain reduced operational costs and peak-to-average ratio by over 35% and 56%, respectively. The proposed approach reveals that optimal coordination of ETS in the presence of dynamic tariffs can reduce diesel consumption, maximize renewable production and reduce grid stress.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"4 ","pages":"121-138"},"PeriodicalIF":0.0,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782707/10008994/10093061.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50350793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Review of Advances in Lighting Systems’ Technology—The Way Toward Lighting 4.0 Era","authors":"Georges Zissis;Paolo Bertoldi","doi":"10.1109/OJIA.2023.3263182","DOIUrl":"https://doi.org/10.1109/OJIA.2023.3263182","url":null,"abstract":"Research and development over the last century have historically concentrated on improving one specific aspect of energy efficiency. The market penetration rate for systems using solid-state light sources is currently between 40 and 45 percent, and it is rising. This article provides an update on the state of lighting technology based on the compilation of more than 160 recent documents. The only widespread use of solid-state lighting sources over the next years might help reduce greenhouse gas emissions by up to 500 Mtn per year and decrease electrical energy utilization for illumination by up to 4% by 2030. But this forecast could be severely affected by the “rebound effect.” Switching to the SSL\u0000<sup>2</sup>\u0000 concept, which consists of sustainable smart lighting systems based on solid-state lighting devices, might be one way to stop that harmful effect. Smart, human-centered lighting that incorporates light quality is driven by “appliance efficiency.” This merely suggests that the “Right Light” should be provided by next-generation lighting systems with the best levels of quality and efficiency when and where it is needed.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"4 ","pages":"111-120"},"PeriodicalIF":0.0,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782707/10008994/10087336.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50350792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tabish Nazir Mir;Bhim Singh;Abdul Hamid Bhat;Marco Rivera;Patrick Wheeler
{"title":"Single-Phase Mains Fed Three-Phase Induction Motor Drive Using Improved Power Quality Direct AC–AC Converter","authors":"Tabish Nazir Mir;Bhim Singh;Abdul Hamid Bhat;Marco Rivera;Patrick Wheeler","doi":"10.1109/OJIA.2023.3279776","DOIUrl":"https://doi.org/10.1109/OJIA.2023.3279776","url":null,"abstract":"This article presents an alternative ac–ac converter topology and its control for low-speed three-phase induction motor drives fed from single-phase ac mains. The proposed matrix converter based drive system eliminates the dc link capacitor, thus facilitating high power density and system reliability. The primary challenge in controlling a \u0000<inline-formula><tex-math>$1phi$</tex-math></inline-formula>\u0000 to \u0000<inline-formula><tex-math>$3phi$</tex-math></inline-formula>\u0000 matrix converter is to navigate the discrepancy of instantaneous power across the \u0000<inline-formula><tex-math>$1phi$</tex-math></inline-formula>\u0000 grid and \u0000<inline-formula><tex-math>$3phi$</tex-math></inline-formula>\u0000 load via a direct ac–ac converter. In order to address this concern, it is proposed to use mathematical modeling of the motor and input \u0000<italic>LC</i>\u0000 filter for state selection, in order to deliver improved current waveforms. Enhanced performance is demonstrated through simulations, and further validated using experimental results. Particularly improved power quality performance is achieved at low motor speeds, where precise low-speed sensorless operation is ensured through suitable speed observer.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"4 ","pages":"178-187"},"PeriodicalIF":0.0,"publicationDate":"2023-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782707/10008994/10132529.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50352166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analytical Design of Self-Sensing Control for PMSM Using Quasi-Direct Calculation","authors":"Niklas Himker;Axel Mertens","doi":"10.1109/OJIA.2023.3276820","DOIUrl":"https://doi.org/10.1109/OJIA.2023.3276820","url":null,"abstract":"The analytical description and parameterization of a self-sensing control (SSC) for an electrical machine is an important step toward easier commissioning of these systems. In this article, the advantages of high bandwidth position estimation via numerical optimization and the filtering characteristics of a phase-locked loop are combined in the quasi-direct (QD) calculation. The QD calculation uses two parameters for estimation. With the help of the maximum possible acceleration of the drive train, an interdependency between these two parameters is derived. The remaining degree of freedom is used to tune the dynamics of the estimation. Using the transfer function of the estimator, which is derived analytically, the parameters of the speed control are selected, and a specified phase-margin is implemented. With the help of the analytical parameterization, no empirical or numerical tuning needs to be done, which is unique for SSC. All results are experimentally validated.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"4 ","pages":"149-159"},"PeriodicalIF":0.0,"publicationDate":"2023-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782707/10008994/10124971.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50350795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Determining the Control Objectives of a Switched Reluctance Machine for Performance Improvement in Generating Mode","authors":"Ahsan Zahid;Berker Bilgin","doi":"10.1109/OJIA.2023.3256364","DOIUrl":"https://doi.org/10.1109/OJIA.2023.3256364","url":null,"abstract":"This article presents a methodology to determine the control objectives of conduction angle control in generating mode of operation in a switched reluctance machine. First, the performance in motoring mode of control is compared with generating mode for different operating points. Then, the key optimization objectives are established to improve a switched reluctance machine's performance in generating mode. A multiobjective optimizer is used to select the conduction angles. The proposed generating-specific objectives are maximizing source current per torque and minimizing torque ripple. These objectives are then compared with the motoring-specific objectives, such as maximizing average torque and minimizing torque ripple for a wide speed range. Finally, the proposed generating objectives have been validated experimentally using a three-phase 12/8 switched reluctance machine.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"4 ","pages":"99-110"},"PeriodicalIF":0.0,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782707/10008994/10068256.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50350791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"First-Order-Delay-Controlled Slip-Angular Frequency for the Dynamic Performance of an Indirect-Field-Orientation-Controlled Induction Motor-Driving Inertial Load","authors":"Masaki Nagataki;Keiichiro Kondo;Osamu Yamazaki;Kazuaki Yuki","doi":"10.1109/OJIA.2023.3275645","DOIUrl":"https://doi.org/10.1109/OJIA.2023.3275645","url":null,"abstract":"Sophisticated torque-current control is required in inertial load-drive applications, such as in electric vehicles and electric railway vehicles, over a wide speed range. However, the conventional indirect-field-orientation control (FOC) lacks the current response during the transient response because the conventional feedforward slip-angular-frequency control causes secondary flux fluctuation. Therefore, this article proposes FOC with first-order-delay slip-angular-frequency control, which reduces the secondary flux fluctuation and realizes high-performance torque-current control during transient response. The proposed method was verified through numerical simulation and small-scale model experiments with a 750 W induction motor and an inertial load.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"4 ","pages":"160-177"},"PeriodicalIF":0.0,"publicationDate":"2023-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782707/10008994/10123699.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50352165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dynamic Phasor Finite-Element Modeling of a DFIG for Grid Connection Studies","authors":"Mohamed A. Almozayen;Andrew M. Knight","doi":"10.1109/OJIA.2023.3254669","DOIUrl":"https://doi.org/10.1109/OJIA.2023.3254669","url":null,"abstract":"Cosimulation studies of electric power systems and electric machines have always been a challenge. In order to reduce the simulation time to a reasonable value, lumped-parameter electric machine models are commonly used in electric power system modeling software packages to avoid the heavy computational burden of more accurate modeling methods especially finite-element method (FEM) on the expense of less accuracy. The proposed technique in this article combines the dynamic phasor modeling technique for power system simulations with the FEM to accurately model the doubly fed induction generator while connected to the grid. The utilization of dynamic phasors enables adopting large simulation time steps resulting in a significant reduction in the simulation time compared to the conventional time-domain FEM modeling. The mathematical foundation of the proposed modeling method is presented including the generator's core saturation. Custom-written C++ codes have been developed by the authors to execute the new dynamic phasor FEM algorithm and the conventional time-domain FEM in order to fairly compare their accuracy and numerical performances. As the proposed method combines time and frequency domains, a unique capability of modeling the rotor movement can be achieved. The rotation can be represented by physically incrementing the rotor and airgap mesh as in regular time-domain solvers, by mathematically representing the rotation using the virtual blocked rotor method as in frequency-domain solvers, and the proposed method of combining the two aforementioned approaches. The three methods of modeling rotor rotation are discussed, and their simulation results are compared to give a guide to choose the proper method for the different modeling targets. The results show that the proposed dynamic phasor FEM is capable of producing comparable results to the traditional time-domain solver at a substantially reduced simulation time.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"4 ","pages":"87-98"},"PeriodicalIF":0.0,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782707/10008994/10065513.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50350790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Three-Phase Four-Wire Inverter for Grid Emulator Under Wide Inductance Variation to Evaluate the Performance of Distributed Generator","authors":"Tsai-Fu Wu;Yun-Hsiang Chang;Chien-Chih Hung;Jui-Yang Chiu","doi":"10.1109/OJIA.2023.3250027","DOIUrl":"https://doi.org/10.1109/OJIA.2023.3250027","url":null,"abstract":"This article presents a three-phase four-wire inverter to generate voltage sources under wide filter inductance variation. The voltage sources with distortion and unbalance are to emulate grid voltages. The distortion includes voltage sags, voltage swells, and harmonic components, and the unbalance includes voltage and phase-angle differences. With a conventional PI control and direct digital control (DDC) only, the voltage distortion cannot fulfill precisely because of the improper controls. While with the proposed modified DDC (PDDC) and harmonic-angle adjustment algorithm, the soft core saturation can be taken into account and the harmonic voltage distortion can be accurately emulated, respectively. Moreover, the proposed control scheme can achieve a fast transient response. The control law is derived and the inverter with the control to generate grid voltage is described in detail. Simulated and experimental results from the 10-kW prototype have verified the analyses and discussions.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"4 ","pages":"260-268"},"PeriodicalIF":0.0,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782707/10008994/10054411.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50352171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}