Y. Berthoud;J.-M. Duchamp;A. Niembro-Martin;E. Dreina;F. Ndagijimana
{"title":"An Empirical Characterization of Galvanized Steel Ohmic Losses—Application to the Modeling of Large Resonant Structures","authors":"Y. Berthoud;J.-M. Duchamp;A. Niembro-Martin;E. Dreina;F. Ndagijimana","doi":"10.1109/LEMCPA.2022.3210040","DOIUrl":"https://doi.org/10.1109/LEMCPA.2022.3210040","url":null,"abstract":"This letter deals with the characterization of Ohmic losses induced by galvanized steel in diffuse field environments. It is then used to compute the mean response of electrically large resonant structures using a statistical method called “Power Balance” (PWB). The Ohmic losses are often predominant and, thus, need to be properly modeled for the method to be accurate. It is especially true for galvanized steel, as it induces losses several orders of magnitude greater than those of untreated steel. First, this letter reviews the principle of the method before presenting a new empirical method for evaluating Ohmic losses induced by coated metals such as galvanized steel. Finally, this method is used as a tool to create an accurate PWB model of a 6-cavity configuration, validated by measurements.","PeriodicalId":100625,"journal":{"name":"IEEE Letters on Electromagnetic Compatibility Practice and Applications","volume":"4 4","pages":"103-107"},"PeriodicalIF":0.0,"publicationDate":"2022-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67853819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analysis of Electromagnetic Noise From Switching Power Modules Using Wide Band Gap Semiconductors","authors":"Koh Watanabe;Misaki Komatsu;Mai Aoi;Ryota Sakai;Satoshi Tanaka;Makoto Nagata","doi":"10.1109/LEMCPA.2022.3207234","DOIUrl":"https://doi.org/10.1109/LEMCPA.2022.3207234","url":null,"abstract":"Wide band gap (WBG) semiconductors, such as gallium nitride (GaN), have become popular among switching power modules. In pursuing power conversion efficiency, power module’s high-speed and high-power operation leads to electromagnetic (EM) noise in a very wide frequency range, potentially interfering with nearby wireless communications [e.g., long-term evolution (LTE)]. This letter analyzes the source of EM noise from the power modules using GaN transistors in half-bridge circuits. EM noise was clearly observed in the proximity of power modules and attributed to two primary sources in the frequency range of interest up to 6 GHz: 1) the periodical switching operation of GaN transistors in the output stage and 2) the logic operation of complementary metal–oxide–semiconductor digital circuits to control gate drivers, in the lower and upper side of frequencies, respectively. Measurements analyzed the EM noise characteristics at different probing locations over the assembly of two GaN power modules as well as in different operating conditions by strategically supplying source signals. The influence of EM noise on LTE receiver performance is evaluated with wireless system-level simulation and related to the degradation of its minimum receivable input power.","PeriodicalId":100625,"journal":{"name":"IEEE Letters on Electromagnetic Compatibility Practice and Applications","volume":"4 4","pages":"92-96"},"PeriodicalIF":0.0,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8566057/9980833/09893896.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67853853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Synopsis of the September 2022 Issue of the IEEE Letters on Electromagnetic Compatibility Practice and Applications","authors":"","doi":"10.1109/LEMCPA.2022.3196482","DOIUrl":"https://doi.org/10.1109/LEMCPA.2022.3196482","url":null,"abstract":"Summary form only: Abstracts of articles presented in this issue of the publication.","PeriodicalId":100625,"journal":{"name":"IEEE Letters on Electromagnetic Compatibility Practice and Applications","volume":"4 3","pages":"53-55"},"PeriodicalIF":0.0,"publicationDate":"2022-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8566057/9875128/09875156.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67868264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Efficient Use of a Hybrid Chamber for Radiated Susceptibility Tests","authors":"Danilo Izzo;Robert Vogt-Ardatjew;Frank Leferink","doi":"10.1109/LEMCPA.2022.3197056","DOIUrl":"https://doi.org/10.1109/LEMCPA.2022.3197056","url":null,"abstract":"This letter describes the design and operation of a novel type of hybrid chamber used for radiated susceptibility tests. This is a semi-anechoic chamber with the possibility to install a vibrating intrinsic reverberation chamber inside. This testing environment can be used for the execution of the radiated susceptibility tests using both the deterministic and stochastic methodologies but without changing the test location, nor moving the device under test with its auxiliary equipment. This allows test engineers to combine the advantages of both reverberation and semi-anechoic chambers with a minimum effort, making it a very practical, cost- and time-efficient solution. The electric field into the reverberation chamber is monitored by eight electric field probes, permitting the closed-loop control of the electric field strength level and an efficient real-time analysis of the performance indicators discussed in this letter.","PeriodicalId":100625,"journal":{"name":"IEEE Letters on Electromagnetic Compatibility Practice and Applications","volume":"4 4","pages":"97-102"},"PeriodicalIF":0.0,"publicationDate":"2022-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67853855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Discussion of the New M-component Engineering Model From Azadifar et al. by Simultaneous Measurements in Rocket-Triggered Lightning","authors":"Quanxin Li;Jianguo Wang;Li Cai;Mi Zhou;Yadong Fan","doi":"10.1109/LEMCPA.2022.3194088","DOIUrl":"https://doi.org/10.1109/LEMCPA.2022.3194088","url":null,"abstract":"A discussion of the new M-component engineering model proposed by Azadifar \u0000<italic>et al.</i>\u0000 (2019) is presented. The M-component electric fields were measured at both close distance of 78 m and far multiple-station distances ranging 69 km −126 km in rocket-triggered lightning. Both the fast microsecond-scale pulse and the following slow millisecond-scale pulse are reproduced in the new engineering model. The electrostatic field component produced by the return-stroke like process along the branch among the new engineering model contributes to weaken the positive overshoot of the close M-component electric field. The modified new engineering model considering an exponential current decay along the grounded channel in the study allows a more satisfactory performance of reproducing full M-component electric fields than that of the model from Azadifar \u0000<italic>et al</i>\u0000.","PeriodicalId":100625,"journal":{"name":"IEEE Letters on Electromagnetic Compatibility Practice and Applications","volume":"4 3","pages":"61-65"},"PeriodicalIF":0.0,"publicationDate":"2022-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67868258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"GPU and CPU-Based Parallel FDTD Methods for Frequency-Dependent Transmission Line Models","authors":"Manuja Gunawardana;Behzad Kordi","doi":"10.1109/LEMCPA.2022.3191597","DOIUrl":"https://doi.org/10.1109/LEMCPA.2022.3191597","url":null,"abstract":"Finite-difference time-domain (FDTD) is a popular method utilized for solving frequency-dependent transmission line structures. It is also conveniently applicable to nonuniform wires. The FDTD algorithm discretizes the transmission line problem into a finite number of space-segments and solve for the voltage and current of each segment at every time-step. Therefore, they inherently involve more computations per timestep than conventional terminal based models. In this letter, parallel implementations of a modified FDTD algorithm for a frequency-dependent transmission line problem using multicore CPU and GPU architectures are proposed in order to increase its computational efficiency. Accuracy and performance of the parallel FDTD methods are discussed with examples. The results indicate that a speedup of a few folds compared to serial execution is achieved by the parallel implementation using multicore CPU architecture whereas a massive speedup is achieved by using GPU. The proposed model is also suitable for modelling transmission lines in massively parallel electromagnetic transient (EMT) simulation methods.","PeriodicalId":100625,"journal":{"name":"IEEE Letters on Electromagnetic Compatibility Practice and Applications","volume":"4 3","pages":"66-70"},"PeriodicalIF":0.0,"publicationDate":"2022-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67868261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Shielding Effectiveness of Gaskets: MIL DTL 83528G Conditions Against Requirements in Practice","authors":"Pavithrakrishnan Radhakrishnan;Tim Claeys;Johan Catrysse;Davy Pissoort","doi":"10.1109/LEMCPA.2022.3183448","DOIUrl":"https://doi.org/10.1109/LEMCPA.2022.3183448","url":null,"abstract":"In this letter, it is suggested how the basic setup of MIL DTL 83528G can easily be adapted to the situations occurring in practice: factors such as the orientations of antennas with respect to the setup, beam width of antennas, and distances between the clamping bolts which hold the gaskets in place, are taken into account. Typical measurement results under different measuring conditions related to practical situations, are reported and discussed, as well as suggestions for good design.","PeriodicalId":100625,"journal":{"name":"IEEE Letters on Electromagnetic Compatibility Practice and Applications","volume":"4 3","pages":"71-76"},"PeriodicalIF":0.0,"publicationDate":"2022-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67868260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"RF Heating Dependence of Head Model Positioning Using 4-Channel Parallel Transmission MRI and a Deep Brain Stimulation Construct","authors":"Benson Yang;Chih-Hung Chen;Simon J. Graham","doi":"10.1109/LEMCPA.2022.3180974","DOIUrl":"https://doi.org/10.1109/LEMCPA.2022.3180974","url":null,"abstract":"Parallel radiofrequency transmission (pTx) continues to demonstrate promise in addressing magnetic resonance imaging (MRI) challenges at higher magnetic-field strengths, particularly regarding the safety of patients with implanted deep brain stimulation (DBS) devices. Radiofrequency (RF) shimming optimization methods have shown the potential of pTx to minimize DBS implant safety concerns relating to induced RF heating at 3T. This letter continues the assessment of 4-channel pTx technology and its associated “safe mode” for the DBS application. Safe mode sensitivity to patient setup mispositioning and movement is important and was studied in proof-of-concept. Phantom mispositioning can impact the electromagnetic near-field distribution and potentially affect the RF heating effects along an implanted DBS device. However, thermal simulations studying DBS patient head movements were performed and indicated minimal safety risks. These results were further validated by an MRI phantom mispositioning experiment encompassing the head motion studied in simulation. Temperature increases remained below +1°C for all tested scenarios in simulation and experiment. However, a severe pitch rotation in the experiment led to a +0.8°C increase, indicating that significant patient movement may still shift implanted DBS leads into higher risk zones. In conclusion, this letter further supports the potential of 4-channel pTx to address DBS patient safety.","PeriodicalId":100625,"journal":{"name":"IEEE Letters on Electromagnetic Compatibility Practice and Applications","volume":"4 3","pages":"83-87"},"PeriodicalIF":0.0,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68148624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Behavioral Modeling of an Off-the-Shelf Damped Sinusoidal Transient Generator","authors":"Xiaokang Liu;Flavia Grassi;François Trotti;Werner Hirschi","doi":"10.1109/LEMCPA.2022.3165762","DOIUrl":"https://doi.org/10.1109/LEMCPA.2022.3165762","url":null,"abstract":"In this letter, experimental characterization and behavioral modeling of an off-the-shelf damped sinusoidal wave generator operating at different frequencies are addressed. Two modeling strategies are developed which lead to an active and a passive circuit representation of the generator, whose involved parameters are optimized by making use of time-domain measurement results obtained with the generator connected to different load impedances. It is shown that either the active or the passive model can assure accurate prediction of the generated waveforms, depending on the specific frequency. The proposed models can be effortlessly implemented in common circuit simulators, and used for systematic design of injection devices for transient conducted susceptibility testing as well as for simulation of the corresponding test setups. As an illustrative example, the proposed models are exploited to predict the actual waveform induced at the input pins of the device under test in a simplified pulse current injection test setup.","PeriodicalId":100625,"journal":{"name":"IEEE Letters on Electromagnetic Compatibility Practice and Applications","volume":"4 3","pages":"56-60"},"PeriodicalIF":0.0,"publicationDate":"2022-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67868262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Comparative Performance Analysis of 6T & 9T SRAM Integrated Circuits: SOI vs. Bulk","authors":"Qazi Mashaal Khan;Richard Perdriau;Mohamed Ramdani;Mohsen Koohestani","doi":"10.1109/LEMCPA.2022.3163963","DOIUrl":"https://doi.org/10.1109/LEMCPA.2022.3163963","url":null,"abstract":"This letter evaluates the performance of 6T & 9T static random access memory (SRAM) cells, for data stability and power metrics, with the aim to compare silicon-on-insulator (SOI) and bulk CMOS technologies. Each SRAM topology was designed & simulated in 180 nm 5 V XFAB-SOI and AMS-bulk processes, using optimized parameters and compatible devices. The fundamental variables analyzed were read noise margins, write trip current & voltage as well as leakage current (LC) and static power dissipation (SPD) under process and temperature (PT) variations. The static noise margin (SNM) butterfly curve and N-curve methodologies were used to assess the mentioned parameters. Compared to bulk technology, the SRAM cells designed with SOI were found to have lower SPD & LC, higher data stability, lower write ability, larger sensitivity to process variations and higher resilience to temperature deviations.","PeriodicalId":100625,"journal":{"name":"IEEE Letters on Electromagnetic Compatibility Practice and Applications","volume":"4 2","pages":"25-30"},"PeriodicalIF":0.0,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67896190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}