Examples and Counterexamples最新文献

筛选
英文 中文
Non-existence of perturbed solutions under a second-order sufficient condition 二阶充分条件下摄动解的不存在性
Examples and Counterexamples Pub Date : 2023-09-06 DOI: 10.1016/j.exco.2023.100122
Gerd Wachsmuth
{"title":"Non-existence of perturbed solutions under a second-order sufficient condition","authors":"Gerd Wachsmuth","doi":"10.1016/j.exco.2023.100122","DOIUrl":"https://doi.org/10.1016/j.exco.2023.100122","url":null,"abstract":"<div><p>We present an optimization problem in infinite dimensions which satisfies the usual second-order sufficient condition but for which perturbed problems fail to possess solutions.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"4 ","pages":"Article 100122"},"PeriodicalIF":0.0,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49883264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Counterexamples for Noise Models of Stochastic Gradients 随机梯度噪声模型的反例
Examples and Counterexamples Pub Date : 2023-08-27 DOI: 10.1016/j.exco.2023.100123
Vivak Patel
{"title":"Counterexamples for Noise Models of Stochastic Gradients","authors":"Vivak Patel","doi":"10.1016/j.exco.2023.100123","DOIUrl":"https://doi.org/10.1016/j.exco.2023.100123","url":null,"abstract":"<div><p>Stochastic Gradient Descent (SGD) is a widely used, foundational algorithm in data science and machine learning. As a result, analyses of SGD abound making use of a variety of assumptions, especially on the noise behavior of the stochastic gradients. While recent works have achieved a high-degree of generality on assumptions about the noise behavior of the stochastic gradients, it is unclear that such generality is necessary. In this work, we construct a simple example that shows that less general assumptions will be violated, while the most general assumptions will hold.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"4 ","pages":"Article 100123"},"PeriodicalIF":0.0,"publicationDate":"2023-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49882666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the fractional Allee logistic equation in the Caputo sense 卡普托意义上的分数阶Allee logistic方程
Examples and Counterexamples Pub Date : 2023-08-11 DOI: 10.1016/j.exco.2023.100121
I. Area , Juan J. Nieto
{"title":"On the fractional Allee logistic equation in the Caputo sense","authors":"I. Area ,&nbsp;Juan J. Nieto","doi":"10.1016/j.exco.2023.100121","DOIUrl":"https://doi.org/10.1016/j.exco.2023.100121","url":null,"abstract":"<div><p>In the framework of population models, logistic growth and fractional logistic growth has been analyzed. In some situations the so-called Allee effect gives more accurate approximation. In this work, fractional Allee differential equation in the Caputo sense is considered. The solution is obtained by considering formal power series. Numerical computations are presented to compare the truncating series with the classical Allee differential equation.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"4 ","pages":"Article 100121"},"PeriodicalIF":0.0,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49882667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Infinitesimal phase response functions can be misleading 无穷小的相位响应函数可能会产生误导
Examples and Counterexamples Pub Date : 2023-08-07 DOI: 10.1016/j.exco.2023.100120
Christoph Börgers
{"title":"Infinitesimal phase response functions can be misleading","authors":"Christoph Börgers","doi":"10.1016/j.exco.2023.100120","DOIUrl":"https://doi.org/10.1016/j.exco.2023.100120","url":null,"abstract":"<div><p>Phase response functions are the central tool in the mathematical analysis of pulse-coupled oscillators. When an oscillator receives a brief input pulse, the phase response function specifies how its phase shifts as a function of the phase at which the input is received. When the pulse is weak, it is customary to linearize around zero pulse strength. The result is called the <em>infinitesimal</em> phase response function. These ideas have been used extensively in theoretical biology, and also in some areas of engineering. I give examples showing that the infinitesimal phase response function may predict that two oscillators, as they exchange pulses back and fourth, will converge to synchrony, yet this is false when the exact phase response function is used, for all positive interaction strengths. For short, the analogue of the Hartman–Grobman theorem that one might expect to hold at first sight is invalid. I give a condition under which the prediction derived using the infinitesimal phase response function does hold for the exact phase response function when interactions are sufficiently weak but of positive strength. However, I argue that this condition may often fail to hold.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"4 ","pages":"Article 100120"},"PeriodicalIF":0.0,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49882573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diagonalization of the cross-product matrix 叉乘矩阵的对角化
Examples and Counterexamples Pub Date : 2023-08-02 DOI: 10.1016/j.exco.2023.100118
Oskar Maria Baksalary , Götz Trenkler
{"title":"Diagonalization of the cross-product matrix","authors":"Oskar Maria Baksalary ,&nbsp;Götz Trenkler","doi":"10.1016/j.exco.2023.100118","DOIUrl":"https://doi.org/10.1016/j.exco.2023.100118","url":null,"abstract":"<div><p>The paper considers diagonalization of the cross-product matrices, i.e., skew-symmetric matrices of order three. A procedure to determine a nonsingular matrix, which yields the diagonalization is indicated. Furthermore, a method to derive the inverse of a diagonalizing matrix is proposed by means of a formula for the Moore–Penrose inverse of any matrix, which is columnwise partitioned into two matrices having disjoint ranges. This rather nonstandard method to obtain the inverse of a nonsingular matrix is appealing, as it can be applied to any diagonalizing matrix, and not only of those originating from diagonalization of the cross-product matrices. The paper provides also comments and examples demonstrating applicability of the diagonalization procedure to calculate roots of a cross-product matrix.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"4 ","pages":"Article 100118"},"PeriodicalIF":0.0,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49882668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New example of strongly regular graph with parameters (81,30,9,12) and a simple group A5 as the automorphism group 参数为(81,30,9,12)的强正则图的新例子,自同构群为一个简单群A5
Examples and Counterexamples Pub Date : 2023-07-28 DOI: 10.1016/j.exco.2023.100119
Dean Crnković, Andrea Švob
{"title":"New example of strongly regular graph with parameters (81,30,9,12) and a simple group A5 as the automorphism group","authors":"Dean Crnković,&nbsp;Andrea Švob","doi":"10.1016/j.exco.2023.100119","DOIUrl":"https://doi.org/10.1016/j.exco.2023.100119","url":null,"abstract":"<div><p>A new strongly regular graph with parameters <span><math><mrow><mo>(</mo><mn>81</mn><mo>,</mo><mn>30</mn><mo>,</mo><mn>9</mn><mo>,</mo><mn>12</mn><mo>)</mo></mrow></math></span> is found as a graph invariant under certain subgroup of the full automorphism group of the previously known strongly regular graph discovered in 1981 by J. H. van Lint and A. Schrijver.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"4 ","pages":"Article 100119"},"PeriodicalIF":0.0,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49882574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solving recurrences for Legendre–Bernstein basis transformations 求解legende - bernstein基变换的递归式
Examples and Counterexamples Pub Date : 2023-07-25 DOI: 10.1016/j.exco.2023.100117
D.A. Wolfram
{"title":"Solving recurrences for Legendre–Bernstein basis transformations","authors":"D.A. Wolfram","doi":"10.1016/j.exco.2023.100117","DOIUrl":"https://doi.org/10.1016/j.exco.2023.100117","url":null,"abstract":"<div><p>The change of basis matrix <span><math><mi>M</mi></math></span> from shifted Legendre to Bernstein polynomials and <span><math><msup><mrow><mi>M</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> have applications in computer graphics. Algorithms use their properties to find the matrix elements efficiently. We give new functions for the elements of <span><math><mi>M</mi></math></span> as a summation, and a complete hypergeometric function. We find that Gosper’s algorithm does not produce closed-form expressions for the elements of either <span><math><mi>M</mi></math></span> or <span><math><msup><mrow><mi>M</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>. Zeilberger’s algorithm produces four second-order recurrences for the elements of the matrices that enable them to be computed in <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> time, and for the derivation of closed-form functions by row and column for the elements. Two row recurrences are special cases of those found by Woźny (2013) who used a different method. We show that the recurrences for rows of <span><math><mi>M</mi></math></span> and columns of <span><math><msup><mrow><mi>M</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> are equivalent. The recurrences for columns of <span><math><mi>M</mi></math></span> and rows of <span><math><msup><mrow><mi>M</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> generate functions that are the Lagrange interpolation polynomials of their elements. These polynomials are equal to hypergeometric functions, which are solutions of the recurrences.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"4 ","pages":"Article 100117"},"PeriodicalIF":0.0,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49882576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A new doubly resolvable candelabra quadruple systems 一种新的双可分辨烛台四重系统
Examples and Counterexamples Pub Date : 2023-05-19 DOI: 10.1016/j.exco.2023.100116
Zhaoping Meng , Qingling Gao
{"title":"A new doubly resolvable candelabra quadruple systems","authors":"Zhaoping Meng ,&nbsp;Qingling Gao","doi":"10.1016/j.exco.2023.100116","DOIUrl":"https://doi.org/10.1016/j.exco.2023.100116","url":null,"abstract":"<div><p>Two resolutions of the same design are said to be orthogonal when each parallel class of one resolution has at most one block in common with each parallel class of the other resolution. If a candelabra quadruple system has two mutually orthogonal resolutions, the design is called doubly resolvable candelabra quadruple system and denoted by DRCQS. In this paper, we obtain a DRCQS<span><math><mrow><mo>(</mo><msup><mrow><mn>3</mn></mrow><mrow><mn>5</mn></mrow></msup><mo>:</mo><mn>1</mn><mo>)</mo></mrow></math></span> by computer search.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"3 ","pages":"Article 100116"},"PeriodicalIF":0.0,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50203805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sum structures in abelian groups 阿贝尔群中的和结构
Examples and Counterexamples Pub Date : 2023-05-13 DOI: 10.1016/j.exco.2023.100101
Robert Haas
{"title":"Sum structures in abelian groups","authors":"Robert Haas","doi":"10.1016/j.exco.2023.100101","DOIUrl":"https://doi.org/10.1016/j.exco.2023.100101","url":null,"abstract":"<div><p>Any set <span><math><mi>S</mi></math></span> of elements from an abelian group produces a graph with colored edges <span><math><mi>G</mi></math></span>(S), with its points the elements of <span><math><mi>S</mi></math></span>, and the edge between points <span><math><mi>P</mi></math></span> and <span><math><mi>Q</mi></math></span> assigned for its “color” the sum <span><math><mrow><mi>P</mi><mo>+</mo><mi>Q</mi></mrow></math></span>. Since any pair of identically colored edges is equivalent to an equation <span><math><mrow><mi>P</mi><mo>+</mo><mi>Q</mi><mo>=</mo><msup><mrow><mi>P</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>+</mo><msup><mrow><mi>Q</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></math></span>, the geometric—combinatorial figure <span><math><mi>G</mi></math></span>(S) is thus equivalent to a system of linear equations. This article derives elementary properties of such “sum cographs”, including forced or forbidden configurations, and then catalogues the 54 possible sum cographs on up to 6 points. Larger sum cograph structures also exist: Points <span><math><mrow><mo>{</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></mrow></math></span> in <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> close up into a “Fibonacci cycle”–i.e. <span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><mn>1</mn></mrow></math></span>, <span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mi>k</mi></mrow></math></span>, <span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mi>i</mi><mo>+</mo><mn>2</mn></mrow></msub><mo>=</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>+</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>i</mi><mo>+</mo><mn>1</mn></mrow></msub></mrow></math></span> for all integers <span><math><mrow><mi>i</mi><mo>≥</mo><mn>0</mn></mrow></math></span>, and then <span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span> and <span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>=</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span>–provided that <span><math><mrow><mi>m</mi><mo>=</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span> is a Lucas prime, in which case actually <span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><msup><mrow><mi>k</mi></mrow><mrow><mi>i</mi></mrow></msup></mrow></math></span> for all <span><math><mrow><mi>i</mi><mo>≥</mo><mn>0</mn></mrow></math></span>.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"3 ","pages":"Article 100101"},"PeriodicalIF":0.0,"publicationDate":"2023-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50203806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the conjecture of Sombor energy of a graph 关于图的Sombor能量猜想
Examples and Counterexamples Pub Date : 2023-05-13 DOI: 10.1016/j.exco.2023.100115
Harishchandra S. Ramane, Deepa V. Kitturmath
{"title":"On the conjecture of Sombor energy of a graph","authors":"Harishchandra S. Ramane,&nbsp;Deepa V. Kitturmath","doi":"10.1016/j.exco.2023.100115","DOIUrl":"https://doi.org/10.1016/j.exco.2023.100115","url":null,"abstract":"<div><p>The Sombor matrix of a graph <span><math><mi>G</mi></math></span> with vertices <span><math><mrow><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span> is defined as <span><math><mrow><msub><mrow><mi>A</mi></mrow><mrow><mi>S</mi><mi>O</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>[</mo><msub><mrow><mi>s</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>]</mo></mrow></mrow></math></span>, where <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>=</mo><msqrt><mrow><msubsup><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>+</mo><msubsup><mrow><mi>d</mi></mrow><mrow><mi>j</mi></mrow><mrow><mn>2</mn></mrow></msubsup></mrow></msqrt></mrow></math></span> if <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is adjacent to <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> and <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>=</mo><mn>0</mn></mrow></math></span>, otherwise, where <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is the degree of a vertex <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>. The Sombor energy of a graph is defined as the sum of the absolute values of the eigenvalues of the Sombor matrix. N. Ghanbari (Ghanbari, 2022) conjectured that there is no graph with integer valued Sombor energy. In this paper we give some class of graphs for which this conjecture holds. Further we conjecture that there is no regular graph with adjacency energy equal to <span><math><mrow><mn>2</mn><mi>k</mi><msqrt><mrow><mn>2</mn></mrow></msqrt></mrow></math></span> where <span><math><mi>k</mi></math></span> is a positive integer.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"3 ","pages":"Article 100115"},"PeriodicalIF":0.0,"publicationDate":"2023-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50203710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信