随机梯度噪声模型的反例

Vivak Patel
{"title":"随机梯度噪声模型的反例","authors":"Vivak Patel","doi":"10.1016/j.exco.2023.100123","DOIUrl":null,"url":null,"abstract":"<div><p>Stochastic Gradient Descent (SGD) is a widely used, foundational algorithm in data science and machine learning. As a result, analyses of SGD abound making use of a variety of assumptions, especially on the noise behavior of the stochastic gradients. While recent works have achieved a high-degree of generality on assumptions about the noise behavior of the stochastic gradients, it is unclear that such generality is necessary. In this work, we construct a simple example that shows that less general assumptions will be violated, while the most general assumptions will hold.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"4 ","pages":"Article 100123"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Counterexamples for Noise Models of Stochastic Gradients\",\"authors\":\"Vivak Patel\",\"doi\":\"10.1016/j.exco.2023.100123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Stochastic Gradient Descent (SGD) is a widely used, foundational algorithm in data science and machine learning. As a result, analyses of SGD abound making use of a variety of assumptions, especially on the noise behavior of the stochastic gradients. While recent works have achieved a high-degree of generality on assumptions about the noise behavior of the stochastic gradients, it is unclear that such generality is necessary. In this work, we construct a simple example that shows that less general assumptions will be violated, while the most general assumptions will hold.</p></div>\",\"PeriodicalId\":100517,\"journal\":{\"name\":\"Examples and Counterexamples\",\"volume\":\"4 \",\"pages\":\"Article 100123\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Examples and Counterexamples\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666657X23000253\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Examples and Counterexamples","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666657X23000253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随机梯度下降(SGD)是数据科学和机器学习中一种广泛使用的基础算法。因此,利用各种假设对SGD进行了大量分析,特别是对随机梯度的噪声行为。虽然最近的工作已经在关于随机梯度的噪声行为的假设上实现了高度的通用性,但尚不清楚这种通用性是否是必要的。在这项工作中,我们构建了一个简单的例子,表明不太普遍的假设会被违反,而最普遍的假设将成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Counterexamples for Noise Models of Stochastic Gradients

Stochastic Gradient Descent (SGD) is a widely used, foundational algorithm in data science and machine learning. As a result, analyses of SGD abound making use of a variety of assumptions, especially on the noise behavior of the stochastic gradients. While recent works have achieved a high-degree of generality on assumptions about the noise behavior of the stochastic gradients, it is unclear that such generality is necessary. In this work, we construct a simple example that shows that less general assumptions will be violated, while the most general assumptions will hold.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信