Solving recurrences for Legendre–Bernstein basis transformations

D.A. Wolfram
{"title":"Solving recurrences for Legendre–Bernstein basis transformations","authors":"D.A. Wolfram","doi":"10.1016/j.exco.2023.100117","DOIUrl":null,"url":null,"abstract":"<div><p>The change of basis matrix <span><math><mi>M</mi></math></span> from shifted Legendre to Bernstein polynomials and <span><math><msup><mrow><mi>M</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> have applications in computer graphics. Algorithms use their properties to find the matrix elements efficiently. We give new functions for the elements of <span><math><mi>M</mi></math></span> as a summation, and a complete hypergeometric function. We find that Gosper’s algorithm does not produce closed-form expressions for the elements of either <span><math><mi>M</mi></math></span> or <span><math><msup><mrow><mi>M</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>. Zeilberger’s algorithm produces four second-order recurrences for the elements of the matrices that enable them to be computed in <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> time, and for the derivation of closed-form functions by row and column for the elements. Two row recurrences are special cases of those found by Woźny (2013) who used a different method. We show that the recurrences for rows of <span><math><mi>M</mi></math></span> and columns of <span><math><msup><mrow><mi>M</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> are equivalent. The recurrences for columns of <span><math><mi>M</mi></math></span> and rows of <span><math><msup><mrow><mi>M</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> generate functions that are the Lagrange interpolation polynomials of their elements. These polynomials are equal to hypergeometric functions, which are solutions of the recurrences.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"4 ","pages":"Article 100117"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Examples and Counterexamples","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666657X23000198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The change of basis matrix M from shifted Legendre to Bernstein polynomials and M1 have applications in computer graphics. Algorithms use their properties to find the matrix elements efficiently. We give new functions for the elements of M as a summation, and a complete hypergeometric function. We find that Gosper’s algorithm does not produce closed-form expressions for the elements of either M or M1. Zeilberger’s algorithm produces four second-order recurrences for the elements of the matrices that enable them to be computed in O(n) time, and for the derivation of closed-form functions by row and column for the elements. Two row recurrences are special cases of those found by Woźny (2013) who used a different method. We show that the recurrences for rows of M and columns of M1 are equivalent. The recurrences for columns of M and rows of M1 generate functions that are the Lagrange interpolation polynomials of their elements. These polynomials are equal to hypergeometric functions, which are solutions of the recurrences.

求解legende - bernstein基变换的递归式
基矩阵M从移位的勒让德多项式到伯恩斯坦多项式和M−1的变化在计算机图形学中有应用。算法利用它们的性质来有效地找到矩阵元素。我们给出了M元素的新函数和一个完全的超几何函数。我们发现,对于M或M - 1的元素,Gosper算法都不能产生封闭形式的表达式。Zeilberger的算法为矩阵的元素产生了四个二阶递归,使它们能够在O(n)时间内计算出来,并为元素的行和列推导出封闭形式的函数。两行递归是Woźny(2013)使用不同方法发现的特殊情况。我们证明了M的行和M−1的列的递归式是等价的。M的列和M−1的行的递归生成的函数是其元素的拉格朗日插值多项式。这些多项式等于超几何函数,它们是递归式的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信