卡普托意义上的分数阶Allee logistic方程

I. Area , Juan J. Nieto
{"title":"卡普托意义上的分数阶Allee logistic方程","authors":"I. Area ,&nbsp;Juan J. Nieto","doi":"10.1016/j.exco.2023.100121","DOIUrl":null,"url":null,"abstract":"<div><p>In the framework of population models, logistic growth and fractional logistic growth has been analyzed. In some situations the so-called Allee effect gives more accurate approximation. In this work, fractional Allee differential equation in the Caputo sense is considered. The solution is obtained by considering formal power series. Numerical computations are presented to compare the truncating series with the classical Allee differential equation.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"4 ","pages":"Article 100121"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the fractional Allee logistic equation in the Caputo sense\",\"authors\":\"I. Area ,&nbsp;Juan J. Nieto\",\"doi\":\"10.1016/j.exco.2023.100121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the framework of population models, logistic growth and fractional logistic growth has been analyzed. In some situations the so-called Allee effect gives more accurate approximation. In this work, fractional Allee differential equation in the Caputo sense is considered. The solution is obtained by considering formal power series. Numerical computations are presented to compare the truncating series with the classical Allee differential equation.</p></div>\",\"PeriodicalId\":100517,\"journal\":{\"name\":\"Examples and Counterexamples\",\"volume\":\"4 \",\"pages\":\"Article 100121\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Examples and Counterexamples\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666657X2300023X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Examples and Counterexamples","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666657X2300023X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在人口模型的框架内,分析了物流增长和部分物流增长。在某些情况下,所谓的Allee效应给出了更精确的近似值。本文研究了Caputo意义上的分数阶Allee微分方程。该解是通过考虑形式幂级数得到的。通过数值计算将截断级数与经典Allee微分方程进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the fractional Allee logistic equation in the Caputo sense

In the framework of population models, logistic growth and fractional logistic growth has been analyzed. In some situations the so-called Allee effect gives more accurate approximation. In this work, fractional Allee differential equation in the Caputo sense is considered. The solution is obtained by considering formal power series. Numerical computations are presented to compare the truncating series with the classical Allee differential equation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信