叉乘矩阵的对角化

Oskar Maria Baksalary , Götz Trenkler
{"title":"叉乘矩阵的对角化","authors":"Oskar Maria Baksalary ,&nbsp;Götz Trenkler","doi":"10.1016/j.exco.2023.100118","DOIUrl":null,"url":null,"abstract":"<div><p>The paper considers diagonalization of the cross-product matrices, i.e., skew-symmetric matrices of order three. A procedure to determine a nonsingular matrix, which yields the diagonalization is indicated. Furthermore, a method to derive the inverse of a diagonalizing matrix is proposed by means of a formula for the Moore–Penrose inverse of any matrix, which is columnwise partitioned into two matrices having disjoint ranges. This rather nonstandard method to obtain the inverse of a nonsingular matrix is appealing, as it can be applied to any diagonalizing matrix, and not only of those originating from diagonalization of the cross-product matrices. The paper provides also comments and examples demonstrating applicability of the diagonalization procedure to calculate roots of a cross-product matrix.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"4 ","pages":"Article 100118"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diagonalization of the cross-product matrix\",\"authors\":\"Oskar Maria Baksalary ,&nbsp;Götz Trenkler\",\"doi\":\"10.1016/j.exco.2023.100118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The paper considers diagonalization of the cross-product matrices, i.e., skew-symmetric matrices of order three. A procedure to determine a nonsingular matrix, which yields the diagonalization is indicated. Furthermore, a method to derive the inverse of a diagonalizing matrix is proposed by means of a formula for the Moore–Penrose inverse of any matrix, which is columnwise partitioned into two matrices having disjoint ranges. This rather nonstandard method to obtain the inverse of a nonsingular matrix is appealing, as it can be applied to any diagonalizing matrix, and not only of those originating from diagonalization of the cross-product matrices. The paper provides also comments and examples demonstrating applicability of the diagonalization procedure to calculate roots of a cross-product matrix.</p></div>\",\"PeriodicalId\":100517,\"journal\":{\"name\":\"Examples and Counterexamples\",\"volume\":\"4 \",\"pages\":\"Article 100118\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Examples and Counterexamples\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666657X23000204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Examples and Counterexamples","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666657X23000204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了叉积矩阵,即三阶斜对称矩阵的对角化问题。给出了一个确定非奇异矩阵的过程,该过程产生了对角化。此外,通过任意矩阵的Moore–Penrose逆的公式,提出了一种推导对角化矩阵逆的方法,该公式按列划分为两个具有不相交范围的矩阵。这种获得非奇异矩阵逆的相当非标准的方法很有吸引力,因为它可以应用于任何对角化矩阵,而不仅仅是那些源于叉积矩阵对角化的矩阵。本文还提供了一些评论和例子,证明了对角化过程在计算叉积矩阵根方面的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diagonalization of the cross-product matrix

The paper considers diagonalization of the cross-product matrices, i.e., skew-symmetric matrices of order three. A procedure to determine a nonsingular matrix, which yields the diagonalization is indicated. Furthermore, a method to derive the inverse of a diagonalizing matrix is proposed by means of a formula for the Moore–Penrose inverse of any matrix, which is columnwise partitioned into two matrices having disjoint ranges. This rather nonstandard method to obtain the inverse of a nonsingular matrix is appealing, as it can be applied to any diagonalizing matrix, and not only of those originating from diagonalization of the cross-product matrices. The paper provides also comments and examples demonstrating applicability of the diagonalization procedure to calculate roots of a cross-product matrix.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信