Engineering Microbiology最新文献

筛选
英文 中文
Regulation of protein thermal stability and its potential application in the development of thermo-attenuated vaccines 蛋白质热稳定性的调节及其在开发减温疫苗中的潜在应用
Engineering Microbiology Pub Date : 2024-06-25 DOI: 10.1016/j.engmic.2024.100162
Maofeng Wang , Cancan Wu , Nan Liu , Xiaoqiong Jiang , Hongjie Dong , Shubao Zhao , Chaonan Li , Sujuan Xu , Lichuan Gu
{"title":"Regulation of protein thermal stability and its potential application in the development of thermo-attenuated vaccines","authors":"Maofeng Wang ,&nbsp;Cancan Wu ,&nbsp;Nan Liu ,&nbsp;Xiaoqiong Jiang ,&nbsp;Hongjie Dong ,&nbsp;Shubao Zhao ,&nbsp;Chaonan Li ,&nbsp;Sujuan Xu ,&nbsp;Lichuan Gu","doi":"10.1016/j.engmic.2024.100162","DOIUrl":"10.1016/j.engmic.2024.100162","url":null,"abstract":"<div><p>The coronavirus disease 2019 (COVID-19) pandemic has highlighted the importance of developing novel vaccines. An ideal vaccine should trigger an intense immune reaction without causing significant side effects. In this study we found that substitution of tryptophan located in the cores of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) protein structures with certain smaller amino acids resulted in variants with melting temperatures of 33–37 °C. An enzyme activity assay indicated that the proteolytic activity of the main proteinase (3CL<sup>pro</sup>) decreased sharply when the environmental temperature exceeded the melting temperature, implying that other protein variants may lose most of their functions under the same conditions. This finding suggests that a virus variant containing engineered proteins with melting temperatures of 33–37 °C may only be functional in the upper respiratory tract where the temperature is about 33 °C, but will be unable to invade internal organs, which maintain temperatures above 37 °C, thus making it possible to construct temperature-sensitive attenuated vaccines.</p></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":"4 3","pages":"Article 100162"},"PeriodicalIF":0.0,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667370324000249/pdfft?md5=678b37931cc38b0eac77aed4ffe7562b&pid=1-s2.0-S2667370324000249-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141961076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual role of phage terminase in Salmonella enterica oxidative stress response 噬菌体终结酶在肠炎沙门氏菌氧化应激反应中的双重作用
Engineering Microbiology Pub Date : 2024-06-04 DOI: 10.1016/j.engmic.2024.100156
Senfeng Zhang , Shengsheng Ma , Feizuo Wang , Chunyi Hu
{"title":"Dual role of phage terminase in Salmonella enterica oxidative stress response","authors":"Senfeng Zhang ,&nbsp;Shengsheng Ma ,&nbsp;Feizuo Wang ,&nbsp;Chunyi Hu","doi":"10.1016/j.engmic.2024.100156","DOIUrl":"10.1016/j.engmic.2024.100156","url":null,"abstract":"<div><p>The adaptive survival mechanisms of bacterial pathogens under host-induced stress are crucial for understanding pathogenesis. Recently, Uppalapati et al. revealed a unique dual function of the Gifsy-1 prophage terminase in <em>Salmonella enterica</em>: it acts as a transfer ribonuclease (tRNase) under oxidative stress. The Gifsy-1 prophage terminase targets and fragments tRNA<sup>Leu</sup> to halt translation and temporarily impairs bacterial growth when exposed to high levels of ROS generated by the host immune cells. This response not only preserves genomic integrity by facilitating DNA repair but also inhibits prophage mobilization, thereby aiding in bacterial survival within vertebrate hosts. This study highlights a novel intersection between phage biology and bacterial adaptive strategies.</p></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":"4 3","pages":"Article 100156"},"PeriodicalIF":0.0,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667370324000158/pdfft?md5=b9a7cbe69de92bd35790678ac162c682&pid=1-s2.0-S2667370324000158-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141275040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An upgraded Myxococcus xanthus chassis with enhanced growth characteristics for efficient genetic manipulation 具有增强生长特性的升级版黄腐霉菌底盘,可用于高效遗传操作
Engineering Microbiology Pub Date : 2024-06-03 DOI: 10.1016/j.engmic.2024.100155
Wei-feng Hu, Yan Wang, Xiao-ran Yue, Wei-wei Xue, Wei Hu, Xin-jing Yue, Yue-Zhong Li
{"title":"An upgraded Myxococcus xanthus chassis with enhanced growth characteristics for efficient genetic manipulation","authors":"Wei-feng Hu,&nbsp;Yan Wang,&nbsp;Xiao-ran Yue,&nbsp;Wei-wei Xue,&nbsp;Wei Hu,&nbsp;Xin-jing Yue,&nbsp;Yue-Zhong Li","doi":"10.1016/j.engmic.2024.100155","DOIUrl":"10.1016/j.engmic.2024.100155","url":null,"abstract":"<div><p>Myxobacteria are well known for multicellular social behaviors and valued for biosynthesis of natural products. Myxobacteria social behaviors such as clumping growth severely hamper strain cultivation and genetic manipulation. Using <em>Myxococcus xanthus</em> DK1622, we engineered Hu04, which is deficient in multicellular behavior and pigmentation. Hu04, while maintaining nutritional growth and a similar metabolic background, exhibits improved dispersed growth, streamlining operational procedures. It achieves high cell densities in culture and is promising for synthetic biology applications.</p></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":"4 3","pages":"Article 100155"},"PeriodicalIF":0.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667370324000183/pdfft?md5=c2064724dd08cca2123f11fd56275bb0&pid=1-s2.0-S2667370324000183-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141279154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel strategy to protect prokaryotic cells from virus infection 保护原核细胞免受病毒感染的新策略
Engineering Microbiology Pub Date : 2024-06-01 DOI: 10.1016/j.engmic.2024.100153
Yoshizumi Ishino
{"title":"A novel strategy to protect prokaryotic cells from virus infection","authors":"Yoshizumi Ishino","doi":"10.1016/j.engmic.2024.100153","DOIUrl":"https://doi.org/10.1016/j.engmic.2024.100153","url":null,"abstract":"<div><p>The recent discovery of the CRISPR-Cas-mediated acquired immunity system highlights the fact that our knowledge of phage/virus defense mechanisms encoded in bacterial and archaeal genomes is far from complete. Indeed, new prokaryotic immune systems are now continually being discovered. A recent report described a novel glycosylase that recognizes α-glycosyl-hydroxymethyl cytosin (α-Glu-hmC), a modified base observed in the T4 phage genome, where it produces an abasic site, thereby inhibiting the phage propagation.</p></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":"4 2","pages":"Article 100153"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266737032400016X/pdfft?md5=3e98fd6b6251c7270234b3d731fe4c7a&pid=1-s2.0-S266737032400016X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141263841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CRISPR-Cas9-based genome-editing technologies in engineering bacteria for the production of plant-derived terpenoids 基于 CRISPR-Cas9 的基因组编辑技术在生产植物源萜类化合物的细菌工程中的应用
Engineering Microbiology Pub Date : 2024-05-28 DOI: 10.1016/j.engmic.2024.100154
Xin Sun , Haobin Zhang , Yuping Jia , Jingyi Li , Meirong Jia
{"title":"CRISPR-Cas9-based genome-editing technologies in engineering bacteria for the production of plant-derived terpenoids","authors":"Xin Sun ,&nbsp;Haobin Zhang ,&nbsp;Yuping Jia ,&nbsp;Jingyi Li ,&nbsp;Meirong Jia","doi":"10.1016/j.engmic.2024.100154","DOIUrl":"https://doi.org/10.1016/j.engmic.2024.100154","url":null,"abstract":"<div><p>Terpenoids are widely used as medicines, flavors, and biofuels. However, the use of these natural products is largely restricted by their low abundance in native plants. Fortunately, heterologous biosynthesis of terpenoids in microorganisms offers an alternative and sustainable approach for efficient production. Various genome-editing technologies have been developed for microbial strain construction. Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated protein 9 (Cas9) is the most commonly used system owing to its outstanding efficiency and convenience in genome editing. In this review, the basic principles of CRISPR-Cas9 systems are briefly introduced and their applications in engineering bacteria for the production of plant-derived terpenoids are summarized. The aim of this review is to provide an overview of the current developments of CRISPR-Cas9-based genome-editing technologies in bacterial engineering, concluding with perspectives on the challenges and opportunities of these technologies.</p></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":"4 3","pages":"Article 100154"},"PeriodicalIF":0.0,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667370324000171/pdfft?md5=2cfc44e8e076429caeecf8ed97dbd95a&pid=1-s2.0-S2667370324000171-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141291571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Key amino acid residues govern the substrate selectivity of the transporter Xltr1p from Trichoderma reesei for glucose, mannose, and galactose 关键氨基酸残基决定了毛霉菌转运体 Xltr1p 对葡萄糖、甘露糖和半乳糖的底物选择性
Engineering Microbiology Pub Date : 2024-05-22 DOI: 10.1016/j.engmic.2024.100151
Wei Ma , Shiyu Yuan , Zixian Wang , Kangle Niu , Fengyi Li , Lulu Liu , Lijuan Han , Xu Fang
{"title":"Key amino acid residues govern the substrate selectivity of the transporter Xltr1p from Trichoderma reesei for glucose, mannose, and galactose","authors":"Wei Ma ,&nbsp;Shiyu Yuan ,&nbsp;Zixian Wang ,&nbsp;Kangle Niu ,&nbsp;Fengyi Li ,&nbsp;Lulu Liu ,&nbsp;Lijuan Han ,&nbsp;Xu Fang","doi":"10.1016/j.engmic.2024.100151","DOIUrl":"10.1016/j.engmic.2024.100151","url":null,"abstract":"<div><p>This research identified four amino acid residues (Leu174, Asn297, Tyr301, and Gln291) that contribute to substrate recognition by the high-affinity glucose transporter Xltr1p from <em>Trichoderma reesei</em>. Potential hotspots affecting substrate specificity were selected through homology modeling, evolutionary conservation analyses, and substrate-docking modeling of Xltr1p. Variants carrying mutations at these hotspots were subsequently obtained via in silico screening. Replacement of Leu174 or Asn297 in Xltr1p with alanine resulted in loss of hexose transport activity, indicating that Leu174 and Asn297 play essential roles in hexose transport. The Y301W variant exhibited accelerated mannose transport, but lost galactose transport capacity, and mutation of Gln291 to alanine greatly accelerated mannose transport. These results suggest that amino acids located in transmembrane α-helix 7 (Asn297, Tyr301, and Gln291) play critical roles in substrate recognition by the hexose transporter Xltr1p. Our results will help expand the potential applications of this transporter and provide insights into the mechanisms underlying its function and specificity.</p></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":"4 4","pages":"Article 100151"},"PeriodicalIF":0.0,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667370324000146/pdfft?md5=bd1fae594efb50f04e5007f9cb46944d&pid=1-s2.0-S2667370324000146-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141143027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of host proteins that interact with African swine fever virus pE301R 鉴定与非洲猪瘟病毒 pE301R 相互作用的宿主蛋白质
Engineering Microbiology Pub Date : 2024-04-05 DOI: 10.1016/j.engmic.2024.100149
Menghan Shi , Niu Zhou , Mengchen Xiu , Xiangzhi Li , Fen Shan , Wu Chen , Wanping Li , Cheng-Ming Chiang , Xiaodong Wu , Youming Zhang , Aiying Li , Jingjing Cao
{"title":"Identification of host proteins that interact with African swine fever virus pE301R","authors":"Menghan Shi ,&nbsp;Niu Zhou ,&nbsp;Mengchen Xiu ,&nbsp;Xiangzhi Li ,&nbsp;Fen Shan ,&nbsp;Wu Chen ,&nbsp;Wanping Li ,&nbsp;Cheng-Ming Chiang ,&nbsp;Xiaodong Wu ,&nbsp;Youming Zhang ,&nbsp;Aiying Li ,&nbsp;Jingjing Cao","doi":"10.1016/j.engmic.2024.100149","DOIUrl":"https://doi.org/10.1016/j.engmic.2024.100149","url":null,"abstract":"<div><p>African swine fever virus (ASFV) infection poses enormous threats and challenges to the global pig industry; however, no effective vaccine is available against ASFV, attributing to the huge viral genome (approximately189 kb) and numerous encoding products (&gt;150 genes) due to the limited understanding on the molecular mechanisms of viral pathogenesis. Elucidating the host-factor/viral-protein interaction network will reveal new targets for developing novel antiviral therapies. Using proteomic analysis, we identified 255 cellular proteins that interact with the ASFV-encoded pE301R protein when transiently expressed in HEK293T cells. Gene ontology (GO) annotation, Kyoto Encyclopedia of Genes and Genomes (KEGG) database enrichment, and protein-protein interaction (PPI) network analyses revealed that pE301R-interacting host proteins are potentially involved in various biological processes, including protein translation and folding, response to stimulation, and mitochondrial transmembrane transport. The interactions of two putative cellular proteins (apoptosis inducing factor mitochondria associated 1 (AIFM1) and vimentin (VIM)) with pE301R-apoptosis inducing factor have been verified by co-immunoprecipitation. Our study revealed the inhibitory role of pE301R in interferon (IFN) induction that involves VIM sequestration by pE301R, identified interactions between ASFV pE301R and cellular proteins, and predicted the potential function of pE301R and its associated biological processes, providing valuable information to enhance our understanding of viral protein function, pathogenesis, and potential candidates for the prevention and control of ASFV infection.</p></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":"4 2","pages":"Article 100149"},"PeriodicalIF":0.0,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667370324000122/pdfft?md5=3dc64fb6bed8b0fa38356bd80c5e7daf&pid=1-s2.0-S2667370324000122-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140650166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
O-methyltransferase CbzMT catalyzes iterative 3,4-dimethylations for carbazomycin biosynthesis O-甲基转移酶 CbzMT 催化迭代 3,4-二甲基化,促进卡巴霉素的生物合成
Engineering Microbiology Pub Date : 2024-04-02 DOI: 10.1016/j.engmic.2024.100150
Baixin Lin, Dashan Zhang, Junbo Wang, Yongjian Qiao, Jinjin Wang, Zixin Deng, Lingxin Kong, Delin You
{"title":"O-methyltransferase CbzMT catalyzes iterative 3,4-dimethylations for carbazomycin biosynthesis","authors":"Baixin Lin,&nbsp;Dashan Zhang,&nbsp;Junbo Wang,&nbsp;Yongjian Qiao,&nbsp;Jinjin Wang,&nbsp;Zixin Deng,&nbsp;Lingxin Kong,&nbsp;Delin You","doi":"10.1016/j.engmic.2024.100150","DOIUrl":"10.1016/j.engmic.2024.100150","url":null,"abstract":"<div><p>Carbazomycins (<strong>1</strong>–<strong>8</strong>) are a subgroup of carbazole derivatives that contain oxygen at the C3 and C4 positions and an unusual asymmetric substitution pattern. Several of these compounds exhibit antifungal and antioxidant activities. To date, no systematic biosynthetic studies have been conducted on carbazomycins. In this study, carbazomycins A and B (<strong>1</strong> and <strong>2</strong>) were isolated from <em>Streptomyces luteosporeus</em> NRRL 2401 using a one-strain-many-compound (OSMAC)-guided natural product mining screen. A biosynthetic gene cluster (BGC) was identified, and possible biosynthetic pathways for <strong>1</strong> and <strong>2</strong> were proposed. The <em>in vivo</em> genetic manipulation of the O-methyltransferase-encoding gene <em>cbzMT</em> proved indispensable for <strong>1</strong> and <strong>2</strong> biosynthesis. Size exclusion chromatography indicated that CbzMT was active as a dimer. <em>In vitro</em> biochemical assays confirmed that CbzMT could repeatedly act on the hydroxyl groups at C3 and C4, producing monomethylated <strong>2</strong> and dimethylated <strong>1</strong>. Monomethylated carbazomycin B (<strong>2</strong>) is not easily methylated; however, CbzMT seemingly prefers the dimethylation of the dihydroxyl substrate (<strong>12</strong>) to <strong>1</strong>, even with a low conversion efficiency. These findings not only improve the understanding of carbazomycin biosynthesis but also expand the inventory of OMT-catalyzing iterative methylations on different acceptor sites, paving the way for engineering biocatalysts to synthesize new active carbazomycin derivatives.</p></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":"4 2","pages":"Article 100150"},"PeriodicalIF":0.0,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667370324000134/pdfft?md5=3368a6d51be469c2d456f31ac0ae09eb&pid=1-s2.0-S2667370324000134-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140776534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electricity generation by Pseudomonas putida B6-2 in microbial fuel cells using carboxylates and carbohydrate as substrates 以羧酸盐和碳水化合物为底物的微生物燃料电池中的假单胞菌 B6-2 的发电功能
Engineering Microbiology Pub Date : 2024-03-26 DOI: 10.1016/j.engmic.2024.100148
Xiaoyan Qi , Huangwei Cai , Xiaolei Wang , Ruijun Liu , Ting Cai , Sen Wang , Xueying Liu , Xia Wang
{"title":"Electricity generation by Pseudomonas putida B6-2 in microbial fuel cells using carboxylates and carbohydrate as substrates","authors":"Xiaoyan Qi ,&nbsp;Huangwei Cai ,&nbsp;Xiaolei Wang ,&nbsp;Ruijun Liu ,&nbsp;Ting Cai ,&nbsp;Sen Wang ,&nbsp;Xueying Liu ,&nbsp;Xia Wang","doi":"10.1016/j.engmic.2024.100148","DOIUrl":"10.1016/j.engmic.2024.100148","url":null,"abstract":"<div><p>Microbial fuel cells (MFCs) employing <em>Pseudomonas putida</em> B6-2 (ATCC BAA-2545) as an exoelectrogen have been developed to harness energy from various conventional substrates, such as acetate, lactate, glucose, and fructose. Owing to its metabolic versatility, <em>P. putida</em> B6-2 demonstrates adaptable growth rates on diverse, cost-effective carbon sources within MFCs, exhibiting distinct energy production characteristics. Notably, the anode chamber's pH rises with carboxylates' (acetate and lactate) consumption and decreases with carbohydrates' (glucose and fructose) utilization. The MFC utilizing fructose as a substrate achieved the highest power density at 411 mW m<sup>−2</sup>. Initial analysis revealed that <em>P. putida</em> B6-2 forms biofilms covered with nanowires, contributing to bioelectricity generation. These microbial nanowires are likely key players in direct extracellular electron transport through physical contact. This study established a robust foundation for producing valuable compounds and bioenergy from common substrates in bioelectrochemical systems (BESs) utilizing <em>P. putida</em> as an exoelectrogen.</p></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":"4 2","pages":"Article 100148"},"PeriodicalIF":0.0,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667370324000110/pdfft?md5=eff030301bd91a1d0c97ae88c88b75b9&pid=1-s2.0-S2667370324000110-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140399510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Carotenoid productivity in human intestinal bacteria Eubacterium limosum and Leuconostoc mesenteroides with functional analysis of their carotenoid biosynthesis genes 类胡萝卜素在人体肠道细菌 Eubacterium limosum 和 Leuconostoc mesenteroides 中的生产率及其类胡萝卜素生物合成基因的功能分析
Engineering Microbiology Pub Date : 2024-03-17 DOI: 10.1016/j.engmic.2024.100147
Wataru Matsumoto , Miho Takemura , Haruka Nanaura , Yuta Ami , Takashi Maoka , Kazutoshi Shindo , Shin Kurihara , Norihiko Misawa
{"title":"Carotenoid productivity in human intestinal bacteria Eubacterium limosum and Leuconostoc mesenteroides with functional analysis of their carotenoid biosynthesis genes","authors":"Wataru Matsumoto ,&nbsp;Miho Takemura ,&nbsp;Haruka Nanaura ,&nbsp;Yuta Ami ,&nbsp;Takashi Maoka ,&nbsp;Kazutoshi Shindo ,&nbsp;Shin Kurihara ,&nbsp;Norihiko Misawa","doi":"10.1016/j.engmic.2024.100147","DOIUrl":"10.1016/j.engmic.2024.100147","url":null,"abstract":"<div><p>The human intestinal microbiota that comprise over 1,000 species thrive in dark and anaerobic environments. They are recognized for the production of diverse low-molecular-weight metabolites crucial to human health and diseases. Carotenoids, low-molecular-weight pigments known for their antioxidative activity, are delivered to humans through oral intake. However, it remains unclear whether human intestinal bacteria biosynthesize carotenoids as part of the <em>in-situ</em> microbiota. In this study, we investigated carotenoid synthesis genes in various human gut and probiotic bacteria. As a result, novel candidates, the <em>crtM</em> and <em>crtN</em> genes, were identified in the carbon monoxide-utilizing gut anaerobe <em>Eubacterium limosum</em> and the lactic acid bacterium <em>Leuconostoc mesenteroides</em> subsp. <em>mesenteroides</em>. These gene candidates were isolated, introduced into <em>Escherichia coli</em>, which synthesized a carotenoid substrate, and cultured aerobically. Structural analysis of the resulting carotenoids revealed that the <em>crtM</em> and <em>crtN</em> gene candidates of <em>E. limosum</em> and L. <em>mesenteroides</em> mediate the production of 4,4′-diaponeurosporene through 15-<em>cis</em>-4,4′-diapophytoene. Evaluation of the <em>crtE</em>-homologous genes in these bacteria indicated their non-functionality for C<sub>40</sub>-carotenoid production. <em>E. limosum</em> and L. <em>mesenteroides</em>, along with the known carotenogenic lactic acid bacterium <em>Lactiplantibacillus plantarum</em>, were observed to produce no carotenoids under strictly anaerobic conditions. The two lactic acid bacteria synthesized detectable levels of 4,4′-diaponeurosporene under semi-aerobic conditions. The findings highlight that the obligate anaerobe <em>E. limosum</em> retains aerobically functional C<sub>30</sub>-carotenoid biosynthesis genes, potentially with no immediate self-utility, suggesting an evolutionary direction in carotenoid biosynthesis. (229 words)</p></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":"4 2","pages":"Article 100147"},"PeriodicalIF":0.0,"publicationDate":"2024-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667370324000109/pdfft?md5=a444c059b576cdeadbaf11dfc4968f7c&pid=1-s2.0-S2667370324000109-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140281374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信