EcoEnergyPub Date : 2024-10-05DOI: 10.1002/ece2.72
Jingwei Li, Shengkai Li, Yaohao Zhang, Zhao-Qing Liu
{"title":"Principles of designing electrocatalysts to boost C–N coupling reactions for urea synthesis","authors":"Jingwei Li, Shengkai Li, Yaohao Zhang, Zhao-Qing Liu","doi":"10.1002/ece2.72","DOIUrl":"https://doi.org/10.1002/ece2.72","url":null,"abstract":"<p>The electrocatalytic C–N coupling reaction can achieve green and sustainable urea synthesis as well as CO<sub>2</sub> conversion and nitrogen fixation. However, the electrocatalytic C–N coupling reaction still faces challenges such as difficult adsorption and activation of reactive species, a large number of reactive intermediates, high reaction energy barriers, and inert reactive kinetics, resulting in the low urea yielding rate and Faradic efficiency. The development of efficient catalysts is key to improve the urea yielding rate and Faradic efficiency. This review covers the development history and basic principles of electrocatalytic C–N coupling for urea production, analyzes the nanostructure–catalytic activity relationship as well as the electronic structure–catalytic activity relationship, and discusses the main reaction mechanism of electrocatalytic C–N coupling for urea production. Based on these analyses, the concept of designing efficient C–N coupling catalysts is derived. Finally, the research status of electrocatalytic C–N coupling for urea synthesis is summarized, and the prospect for developing efficient electrocatalysts and C–N coupling mechanism are proposed.</p>","PeriodicalId":100387,"journal":{"name":"EcoEnergy","volume":"2 4","pages":"679-694"},"PeriodicalIF":0.0,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece2.72","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142868056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EcoEnergyPub Date : 2024-10-05DOI: 10.1002/ece2.69
Yueyang Wang, Qi Li, Jiawei Xiong, Linfeng Yu, Qi Li, Yanan Lv, Kovan Khasraw Abdalla, Runze Wang, Xinyu Li, Yi Zhao, Xiaoming Sun
{"title":"High-performance vanadium oxide-based aqueous zinc batteries: Organic molecule modification, challenges, and future prospects","authors":"Yueyang Wang, Qi Li, Jiawei Xiong, Linfeng Yu, Qi Li, Yanan Lv, Kovan Khasraw Abdalla, Runze Wang, Xinyu Li, Yi Zhao, Xiaoming Sun","doi":"10.1002/ece2.69","DOIUrl":"https://doi.org/10.1002/ece2.69","url":null,"abstract":"<p>Aqueous Zn-vanadium batteries have been attracting significant interest due to the high theoretical capacity, diverse crystalline structures, and cost-effectiveness of vanadium oxide cathodes. Despite these advantages, challenges such as low redox potential, sluggish reaction kinetics, and vanadium dissolution lead to inferior energy density and unsatisfactory lifespan of vanadium oxide cathodes. Addressing these issues, given the abundant redox groups and flexible structures in organic compounds, this study comprehensively reviews the latest developments of organic-modified vanadium-based oxide strategies, especially organic interfacial modification, and pre-intercalation. The review presents detailed analyses of the energy storage mechanism and multiple electron transfer reactions that contribute to enhanced battery performance, including boosted redox kinetics, higher energy density, and broadened lifespan. Furthermore, the review emphasizes the necessity of in situ characterization and theoretical calculation techniques for the further investigation of appropriate organic “guest” materials and matched redox couples in the organic-vanadium oxide hybrids with muti-energy storage mechanisms. The review also highlights strategies for Zn anode protection and electrolyte solvation regulation, which are critical for developing advanced Zn-vanadium battery systems suitable for large-scale energy storage applications.</p>","PeriodicalId":100387,"journal":{"name":"EcoEnergy","volume":"2 4","pages":"652-678"},"PeriodicalIF":0.0,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece2.69","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142868055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recent advances in functionalized separator for dendrites-free and stable lithium metal batteries","authors":"Xiaojuan Zhang, Yu Wu, Bo Yu, Kunpeng Hu, Ping Zhang, Fei Ding, Lin Zhang, Yuanfu Chen, Jian Zhen Ou, Zhigang Zhang","doi":"10.1002/ece2.58","DOIUrl":"https://doi.org/10.1002/ece2.58","url":null,"abstract":"<p>Lithium (Li) metal anode is considered the “Holy grail” for the most promising next-generation rechargeable lithium metal batteries (LMBs) because of ultra-high theoretical specific capacity, ultra-low reduction potential and small density. However, uncontrolled lithium dendrite growth and inevitable side reaction seriously hindered the application of practical LMBs because of the deteriorating electrochemical performances and exacerbating the safety issues of LMBs. Thus, improving the electrochemical performances of LMBs by constructed of functionalized separator is promising for overcoming the above-mentioned challenges due to its' significantly advantages, such as enhancing mechanical and thermal stability, regulating the diffusion and migration of Li ions, homogenizing Li ion flux, forming protective layer on Li anode surfaces, etc. The relational investigations have significantly increased since 2020, while the comprehensive reviews on this research direction are relatively rare, especially in the detailed mechanism aspects. In this review, an overview in functionalized separator for stable LMBs is discussed in detail. Firstly, the current issues of LMBs are in-depth discussion and the general strategies are summarized. Subsequently, the requirements and limitations of separator, as well as the advantages of functionalized separator are summarized and reviewed. Most importantly, the protection mechanisms and research advances of advanced functionalized separator are comprehensively discussed and summarized. Furthermore, the applications of functionalized separator in rechargeable lithium metal-based full cells are reviewed. Finally, the challenges and potential opportunities for the future development and rational design of functionalized separator are highlighted in rechargeable LMBs to obtain future research directions related to the significant strategy of constructing dendrite-free and stable LMBs.</p>","PeriodicalId":100387,"journal":{"name":"EcoEnergy","volume":"2 4","pages":"549-598"},"PeriodicalIF":0.0,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece2.58","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142869184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Novel and active Bi2Zr1.9M0.1O7 (M = Mn, Fe, Co, Ni) catalysts for soot particle removal: Engineering surface with rich oxygen defects via partial substitution of Zr-site","authors":"Shijing Zhang, Ping Wang, Yuting Li, Haojun Liu, Jiating Shen, Xianglan Xu, Junwei Xu, Xiuzhong Fang, Xiang Wang","doi":"10.1002/ece2.64","DOIUrl":"https://doi.org/10.1002/ece2.64","url":null,"abstract":"<p>To obtain more cost-effective, non-noble catalysts for soot particle combustion of diesel engine cars, Bi<sub>2</sub>Zr<sub>1.9</sub>M<sub>0.1</sub>O<sub>7</sub> (M = Mn, Fe, Co, Ni) compounds with partial lattice substitution have been designed and synthesized. All the substituted catalysts show significantly promoted activity, in the order of Bi<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub> < Bi<sub>2</sub>Zr<sub>1.9</sub>Ni<sub>0.1</sub>O<sub>7</sub> < Bi<sub>2</sub>Zr<sub>1.9</sub>Co<sub>0.1</sub>O<sub>7</sub> < Bi<sub>2</sub>Zr<sub>1.9</sub>Fe<sub>0.1</sub>O<sub>7</sub> < Bi<sub>2</sub>Zr<sub>1.9</sub>Mn<sub>0.1</sub>O<sub>7</sub>. The presence of NO improves the activity of all the samples due to the generation of active surface nitrates/nitrites. It has been proven that all the modified catalysts possess weaker Zr–O bonds, which facilitates the generation of more surface defects. Density functional theory calculations have confirmed that a more defective catalyst has a lower vacancy formation energy and O<sub>2</sub> adsorption energy. Isotopic <sup>18</sup>O<sub>2</sub> labeling has also substantiated that a more defective catalyst has a faster gaseous O<sub>2</sub> exchange rate, thus improving the generation of more abundant soot reactive oxygen sites. The weakening of Zr-O bonds is the inherent factor to improve the catalytic activity. Mn-substitution can lead to the weakest Zr-O bonds in Bi<sub>2</sub>Zr<sub>1.9</sub>Mn<sub>0.1</sub>O<sub>7</sub>, which thus shows the optimal catalytic activity. Notably, the complete soot combustion can be achieved even at 360°C on this catalyst.</p>","PeriodicalId":100387,"journal":{"name":"EcoEnergy","volume":"2 4","pages":"736-748"},"PeriodicalIF":0.0,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece2.64","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142869126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EcoEnergyPub Date : 2024-09-11DOI: 10.1002/ece2.62
Amritha Philomina, Deb Biswapriya
{"title":"Utilizing water hyacinth extract as an eco-friendly electrolyte substitute for electrochromic devices","authors":"Amritha Philomina, Deb Biswapriya","doi":"10.1002/ece2.62","DOIUrl":"https://doi.org/10.1002/ece2.62","url":null,"abstract":"<p>In this study, an entirely biodegradable and cations-rich Water hyacinth (WH) (<i>Eichhorniacrassipes</i>) extract is used as the electrolyte in electrochromic devices. The active electrodes are fabricated by applying a layer of nanocrystalline orthorhombic WO<sub>3</sub> onto 5 × 5 cm<sup>2</sup> fluorinated tin oxide plates using an indigenous formulation. The electrolyte utilized is the juice derived from WH plants without any modifications. The devices exhibit a transmission contrast of around 46% and 82% at wavelengths of 600 nm and >1000 nm, respectively, between the colored and bleached states. Additionally, they have a rapid coloration/bleaching time of 10 and 4.6 s with coloration efficiency value around 52 cm<sup>2</sup>/C. Investigations have indicated that the electrolyte's sodium ion concentration is likely the key behind the electrochromic process in this system. Using pectin as a natural gelling agent results in the formation of a gel polymer electrolyte that is mechanically resilient. The electrochromic systems created utilizing this electrolyte exhibit exceptional cyclic stability, lasting for 16 000 s of uninterrupted voltage sweep.</p>","PeriodicalId":100387,"journal":{"name":"EcoEnergy","volume":"2 4","pages":"714-723"},"PeriodicalIF":0.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece2.62","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142868340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EcoEnergyPub Date : 2024-09-10DOI: 10.1002/ece2.61
Yihui Zou, Jin Sun, Yulong Chi, Xueyan Cheng, Dongjiang Yang
{"title":"Recent advances and challenges of cathode materials in aqueous rechargeable zinc-ion batteries","authors":"Yihui Zou, Jin Sun, Yulong Chi, Xueyan Cheng, Dongjiang Yang","doi":"10.1002/ece2.61","DOIUrl":"https://doi.org/10.1002/ece2.61","url":null,"abstract":"<p>Aqueous Zn-ion battery (AZIB) is a new type of secondary battery developed in recent years. It has the advantages of high energy density, high power density, efficient and safe discharge process, non-toxic and cheap battery materials, simple preparation process, etc., and has high application prospects in emerging large-scale energy storage fields such as electric vehicles and energy storage grids. Currently, one of the main factors hindering the further development of AZIBs batteries is the lack of suitable cathode materials. This article briefly introduces the advantages and energy storage mechanisms of aqueous zinc-ion batteries. Based on the crucial role of cathode materials in AZIBs, several common cathode materials (such as manganese-based compounds, vanadium-based compounds, nickel/cobalt-based compounds, and lithium/sodium intercalated compounds) are reviewed, and strategies to improve their conductivity and cycling stability are summarized, focusing on modification strategies such as structural regulation, nanoengineering, doping modification, and compounding with high-conductivity materials. The article also points out the key development directions for cathode materials of AZIBs in the future.</p>","PeriodicalId":100387,"journal":{"name":"EcoEnergy","volume":"2 4","pages":"599-629"},"PeriodicalIF":0.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece2.61","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142868149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EcoEnergyPub Date : 2024-09-09DOI: 10.1002/ece2.63
Di Wu, Haoyang Du, Ziyi Liu, G. A. Bagliu, Jianping Lai, Lei Wang
{"title":"Construction of high-loading WO3-x sub-nanometer clusters via orderly-anchored top–down strategy boost acidic hydrogen evolution","authors":"Di Wu, Haoyang Du, Ziyi Liu, G. A. Bagliu, Jianping Lai, Lei Wang","doi":"10.1002/ece2.63","DOIUrl":"https://doi.org/10.1002/ece2.63","url":null,"abstract":"<p>Exploring a simple, rapid, and scalable synthesis method for the synthesis of high loading nonprecious metal sub-nanometer clusters (SNCs) electrocatalysts is one of the most promising endeavors today. Herein, an orderly-anchored top–down strategy is proposed for fabricating a new type of high loading WO<sub>3-x</sub> SNCs on O-functional group-modified Ketjen black (WO<sub>3-x</sub>-C(O)) to balance the high loading (49.29 wt.%) and sub-nanometer size. By optimizing the vacancy number, WO<sub>2.71</sub>-C(O) has extremely large electrochemically active surface area (402 m<sup>2</sup> g<sup>−1</sup>) and high turnover frequency value of 1.722 s<sup>−1</sup> at −50 mV (vs. reversible hydrogen electrode). The overpotential of WO<sub>2.71</sub>-C(O) reaches 22 mV at a current density of 10 mA cm<sup>−2</sup>, which is significantly better than the commercial Pt/C level (32 mV), achieving a breakthrough in the hydrogen evolution reaction (HER) catalytic activity of nonprecious metals in acidic environment. Theoretical calculations and in situ characterization show that this material allows for the enrichment of reactants (H*) and the optimization of intermediate adsorption, which leads to the enhancement of acidic HER catalytic activity.</p>","PeriodicalId":100387,"journal":{"name":"EcoEnergy","volume":"2 4","pages":"724-735"},"PeriodicalIF":0.0,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece2.63","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142868177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EcoEnergyPub Date : 2024-09-03DOI: 10.1002/ece2.60
Muhammad Altaf Nazir, Tayyaba Najam, Sami Ullah, Ismail Hossain, Muhammad Sufyan Javed, Mamoona Naseer, Aziz ur Rehman, Syed Shoaib Ahmad Shah
{"title":"Recent advances in MXene nanomaterials: Fundamentals to applications in environment sector","authors":"Muhammad Altaf Nazir, Tayyaba Najam, Sami Ullah, Ismail Hossain, Muhammad Sufyan Javed, Mamoona Naseer, Aziz ur Rehman, Syed Shoaib Ahmad Shah","doi":"10.1002/ece2.60","DOIUrl":"https://doi.org/10.1002/ece2.60","url":null,"abstract":"<p>MXenes are a new type of 2D transition metal carbon/nitride or carbonitride, which are composed of M<sub><i>n</i>+1</sub>AX<sub>n</sub> phase material (MAX phase) through single-layer or thin-layer nanosheets obtained by exfoliation. Owning to unique two-dimensional layered structure, large specific surface area, excellent electrical conductivity and mechanical stability, the MXenes have quickly become a research hotspot due to their magnetic and other properties, and have been widely used in many fields such as electrochemical sensors, energy storage, catalysis, and adsorption. This article summarizes and introduces preparation methods of two-dimensional materials MXenes, and focus on reviewing their application research progress in the electrochemical sensors and environmental field in recent years, including detection of biomarkers and environmental pollutants, adsorption of heavy metals, adsorption of radiation metals, adsorption of organic matter, selective adsorption of carbon dioxide, membrane separation, sensors, electrocatalysis, photocatalysis, electromagnetic absorption and shielding, etc. A summary and review were conducted, and finally the existing problems and future development at this stage were analyzed.</p>","PeriodicalId":100387,"journal":{"name":"EcoEnergy","volume":"2 4","pages":"505-548"},"PeriodicalIF":0.0,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece2.60","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142867826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modification engineering of “polymer-in-salt” electrolytes toward high-stability solid-state lithium batteries","authors":"Xiaotong Chang, Kaiyue Liu, Mengyang Jia, Zhijie Bi, Xiangxin Guo","doi":"10.1002/ece2.59","DOIUrl":"https://doi.org/10.1002/ece2.59","url":null,"abstract":"<p>Solid-state lithium batteries have been regarded as a promising candidate to become the power supply for electric vehicles and smart grids due to their high energy density and reliable safety. The solid polymer electrolytes (SPEs) with light and thin features show distinctive potential in boosting the available energy density at battery level, whereas their ionic conductivity smaller than 10<sup>−4</sup>∼10<sup>−5</sup> S cm<sup>−1</sup> at room temperature constrains the ionic transfer kinetics, leading to low power density and short cycling life. To overcome such problem, the increase of lithium-salt concentration over 50 wt% evokes the conversion from “salt-in-polymer” to “polymer-in-salt” (PIS) of SPEs, which can make additional ionic migration pathway and thus the improved ionic conductivity. However, the abundant lithium-salt may also cause the reduced electrochemical window as well as mechanical properties, which restricts the compatibility with high-voltage cathodes and lowers the operation safety. In this review, the structures and characteristics of PIS electrolytes have been elucidated through clarifying the correlation between lithium-salt and polymer matrix. Then, the recent modification engineering progresses on PIS electrolytes are addressed from the aspects of component regulations including polymer matrices, lithium salts and fillers, novel preparation techniques, and extended application scenarios. The crucial challenges and possible research directions are finally proposed for the PIS electrolytes regarding both science and practical perspectives.</p>","PeriodicalId":100387,"journal":{"name":"EcoEnergy","volume":"2 3","pages":"433-447"},"PeriodicalIF":0.0,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece2.59","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142313384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EcoEnergyPub Date : 2024-08-09DOI: 10.1002/ece2.57
Tengyi Liu, Hiroshi Yabu
{"title":"Copper nanoclusters derived from copper phthalocyanine as real active sites for CO2 electroreduction: Exploring size dependency on selectivity - A mini review","authors":"Tengyi Liu, Hiroshi Yabu","doi":"10.1002/ece2.57","DOIUrl":"10.1002/ece2.57","url":null,"abstract":"<p>The electrochemical reduction reaction of CO<sub>2</sub> (CO<sub>2</sub>RR) holds promise for converting CO<sub>2</sub> into valuable fuels and chemicals, particularly when powered by renewable electricity, thereby aiding in reducing atmospheric CO<sub>2</sub> levels and addressing climate change. Copper phthalocyanine and its derivatives (Cu-Pcs) have attracted significant attention as versatile electrocatalytic materials with high selectivity toward various hydrocarbon products. However, the real active sites of Cu-Pcs for different products vary, and there is a lack of comprehensive summary. To address this gap, we analyze and summarize previous research, yielding the following insights: Cu-Pcs undergo reconstruction and demetallization during CO<sub>2</sub>RR, with Cu<sub>(II)</sub> converting to Cu<sub>(0)</sub>, forming transient copper nanoclusters (Cu NCs). The selectivity for CO<sub>2</sub>RR products closely correlates with the size of those derived Cu NCs. Specifically, reversible Cu NCs with ultrasmall sizes (≤2 nm), which revert to Cu-Pcs after electrolysis, exhibit high selectivity toward CH<sub>4</sub>. As Cu NCs increase in size, there is a higher CO coverage, promoting CO generation. When Cu NCs exceed a critical threshold size (approximately 15 nm), C-C coupling can occur, facilitating the formation of multicarbon (C<sub>2+</sub>) products. Furthermore, the structure of macrocycles, types of functional groups, and properties of carbon substrates influence the size and electron density of Cu NCs, thereby impacting the selectivity of CO<sub>2</sub>RR products.</p>","PeriodicalId":100387,"journal":{"name":"EcoEnergy","volume":"2 3","pages":"419-432"},"PeriodicalIF":0.0,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece2.57","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141922858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}