Construction of high-loading WO3-x sub-nanometer clusters via orderly-anchored top–down strategy boost acidic hydrogen evolution

EcoEnergy Pub Date : 2024-09-09 DOI:10.1002/ece2.63
Di Wu, Haoyang Du, Ziyi Liu, G. A. Bagliu, Jianping Lai, Lei Wang
{"title":"Construction of high-loading WO3-x sub-nanometer clusters via orderly-anchored top–down strategy boost acidic hydrogen evolution","authors":"Di Wu,&nbsp;Haoyang Du,&nbsp;Ziyi Liu,&nbsp;G. A. Bagliu,&nbsp;Jianping Lai,&nbsp;Lei Wang","doi":"10.1002/ece2.63","DOIUrl":null,"url":null,"abstract":"<p>Exploring a simple, rapid, and scalable synthesis method for the synthesis of high loading nonprecious metal sub-nanometer clusters (SNCs) electrocatalysts is one of the most promising endeavors today. Herein, an orderly-anchored top–down strategy is proposed for fabricating a new type of high loading WO<sub>3-x</sub> SNCs on O-functional group-modified Ketjen black (WO<sub>3-x</sub>-C(O)) to balance the high loading (49.29 wt.%) and sub-nanometer size. By optimizing the vacancy number, WO<sub>2.71</sub>-C(O) has extremely large electrochemically active surface area (402 m<sup>2</sup> g<sup>−1</sup>) and high turnover frequency value of 1.722 s<sup>−1</sup> at −50 mV (vs. reversible hydrogen electrode). The overpotential of WO<sub>2.71</sub>-C(O) reaches 22 mV at a current density of 10 mA cm<sup>−2</sup>, which is significantly better than the commercial Pt/C level (32 mV), achieving a breakthrough in the hydrogen evolution reaction (HER) catalytic activity of nonprecious metals in acidic environment. Theoretical calculations and in situ characterization show that this material allows for the enrichment of reactants (H*) and the optimization of intermediate adsorption, which leads to the enhancement of acidic HER catalytic activity.</p>","PeriodicalId":100387,"journal":{"name":"EcoEnergy","volume":"2 4","pages":"724-735"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece2.63","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EcoEnergy","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ece2.63","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Exploring a simple, rapid, and scalable synthesis method for the synthesis of high loading nonprecious metal sub-nanometer clusters (SNCs) electrocatalysts is one of the most promising endeavors today. Herein, an orderly-anchored top–down strategy is proposed for fabricating a new type of high loading WO3-x SNCs on O-functional group-modified Ketjen black (WO3-x-C(O)) to balance the high loading (49.29 wt.%) and sub-nanometer size. By optimizing the vacancy number, WO2.71-C(O) has extremely large electrochemically active surface area (402 m2 g−1) and high turnover frequency value of 1.722 s−1 at −50 mV (vs. reversible hydrogen electrode). The overpotential of WO2.71-C(O) reaches 22 mV at a current density of 10 mA cm−2, which is significantly better than the commercial Pt/C level (32 mV), achieving a breakthrough in the hydrogen evolution reaction (HER) catalytic activity of nonprecious metals in acidic environment. Theoretical calculations and in situ characterization show that this material allows for the enrichment of reactants (H*) and the optimization of intermediate adsorption, which leads to the enhancement of acidic HER catalytic activity.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信