EcoEnergy最新文献

筛选
英文 中文
Modification engineering of “polymer-in-salt” electrolytes toward high-stability solid-state lithium batteries 面向高稳定性固态锂电池的 "盐中聚合物 "电解质改性工程
EcoEnergy Pub Date : 2024-08-23 DOI: 10.1002/ece2.59
Xiaotong Chang, Kaiyue Liu, Mengyang Jia, Zhijie Bi, Xiangxin Guo
{"title":"Modification engineering of “polymer-in-salt” electrolytes toward high-stability solid-state lithium batteries","authors":"Xiaotong Chang,&nbsp;Kaiyue Liu,&nbsp;Mengyang Jia,&nbsp;Zhijie Bi,&nbsp;Xiangxin Guo","doi":"10.1002/ece2.59","DOIUrl":"https://doi.org/10.1002/ece2.59","url":null,"abstract":"<p>Solid-state lithium batteries have been regarded as a promising candidate to become the power supply for electric vehicles and smart grids due to their high energy density and reliable safety. The solid polymer electrolytes (SPEs) with light and thin features show distinctive potential in boosting the available energy density at battery level, whereas their ionic conductivity smaller than 10<sup>−4</sup>∼10<sup>−5</sup> S cm<sup>−1</sup> at room temperature constrains the ionic transfer kinetics, leading to low power density and short cycling life. To overcome such problem, the increase of lithium-salt concentration over 50 wt% evokes the conversion from “salt-in-polymer” to “polymer-in-salt” (PIS) of SPEs, which can make additional ionic migration pathway and thus the improved ionic conductivity. However, the abundant lithium-salt may also cause the reduced electrochemical window as well as mechanical properties, which restricts the compatibility with high-voltage cathodes and lowers the operation safety. In this review, the structures and characteristics of PIS electrolytes have been elucidated through clarifying the correlation between lithium-salt and polymer matrix. Then, the recent modification engineering progresses on PIS electrolytes are addressed from the aspects of component regulations including polymer matrices, lithium salts and fillers, novel preparation techniques, and extended application scenarios. The crucial challenges and possible research directions are finally proposed for the PIS electrolytes regarding both science and practical perspectives.</p>","PeriodicalId":100387,"journal":{"name":"EcoEnergy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece2.59","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142313384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Copper nanoclusters derived from copper phthalocyanine as real active sites for CO2 electroreduction: Exploring size dependency on selectivity - A mini review 将酞菁铜衍生的纳米铜簇作为二氧化碳电还原的真正活性位点:探索选择性的尺寸依赖性 - 综述
EcoEnergy Pub Date : 2024-08-09 DOI: 10.1002/ece2.57
Tengyi Liu, Hiroshi Yabu
{"title":"Copper nanoclusters derived from copper phthalocyanine as real active sites for CO2 electroreduction: Exploring size dependency on selectivity - A mini review","authors":"Tengyi Liu,&nbsp;Hiroshi Yabu","doi":"10.1002/ece2.57","DOIUrl":"10.1002/ece2.57","url":null,"abstract":"<p>The electrochemical reduction reaction of CO<sub>2</sub> (CO<sub>2</sub>RR) holds promise for converting CO<sub>2</sub> into valuable fuels and chemicals, particularly when powered by renewable electricity, thereby aiding in reducing atmospheric CO<sub>2</sub> levels and addressing climate change. Copper phthalocyanine and its derivatives (Cu-Pcs) have attracted significant attention as versatile electrocatalytic materials with high selectivity toward various hydrocarbon products. However, the real active sites of Cu-Pcs for different products vary, and there is a lack of comprehensive summary. To address this gap, we analyze and summarize previous research, yielding the following insights: Cu-Pcs undergo reconstruction and demetallization during CO<sub>2</sub>RR, with Cu<sub>(II)</sub> converting to Cu<sub>(0)</sub>, forming transient copper nanoclusters (Cu NCs). The selectivity for CO<sub>2</sub>RR products closely correlates with the size of those derived Cu NCs. Specifically, reversible Cu NCs with ultrasmall sizes (≤2 nm), which revert to Cu-Pcs after electrolysis, exhibit high selectivity toward CH<sub>4</sub>. As Cu NCs increase in size, there is a higher CO coverage, promoting CO generation. When Cu NCs exceed a critical threshold size (approximately 15 nm), C-C coupling can occur, facilitating the formation of multicarbon (C<sub>2+</sub>) products. Furthermore, the structure of macrocycles, types of functional groups, and properties of carbon substrates influence the size and electron density of Cu NCs, thereby impacting the selectivity of CO<sub>2</sub>RR products.</p>","PeriodicalId":100387,"journal":{"name":"EcoEnergy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece2.57","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141922858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication of self-supported catalysts via electrodeposition for proton exchange membrane water electrolysis: Emphasizing on the porous transport layers 通过电沉积制备用于质子交换膜水电解的自支撑催化剂:强调多孔传输层
EcoEnergy Pub Date : 2024-08-02 DOI: 10.1002/ece2.55
Jin Uk Jang, Ashish Gaur, Sungwook Mhin, HyukSu Han
{"title":"Fabrication of self-supported catalysts via electrodeposition for proton exchange membrane water electrolysis: Emphasizing on the porous transport layers","authors":"Jin Uk Jang,&nbsp;Ashish Gaur,&nbsp;Sungwook Mhin,&nbsp;HyukSu Han","doi":"10.1002/ece2.55","DOIUrl":"https://doi.org/10.1002/ece2.55","url":null,"abstract":"<p>The potential of proton exchange membrane water electrolysis (PEMWE) is enormous in tackling worldwide environmental and energy issues in the face of increasing risks associated with climate change and energy scarcity. Nevertheless, the economic competitiveness of hydrogen production is hindered by the challenging operating conditions in acidic environments, resulting in a lower unit cost compared to alternative energy sources. Hence, numerous global research endeavors persist in enhancing the efficiency of essential components in PEMWE systems, specifically the porous transport layer (PTL). Additionally, investigating the interface between catalyst layer (CL) and PTL, which is directly associated with system performance, is imperative for future sustainability and cost reduction. This review focuses on the analysis of fabrication techniques, materials, and structural configurations to enhance the performance of PTLs. Additionally, we suggest the use of self-supported catalysts as potential solutions to enhance mass and charge transfer at the interface between CLs and PTLs, hence facilitating the production of hydrogen on a wide scale. In the last section we provide an overview of the future trajectory and potential of next-generation PEMWE in the context of efficient hydrogen production.</p>","PeriodicalId":100387,"journal":{"name":"EcoEnergy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece2.55","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142313260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrode materials for calcium batteries: Future directions and perspectives 钙电池电极材料:未来方向和前景
EcoEnergy Pub Date : 2024-07-20 DOI: 10.1002/ece2.53
Titus Masese, Godwill Mbiti Kanyolo
{"title":"Electrode materials for calcium batteries: Future directions and perspectives","authors":"Titus Masese,&nbsp;Godwill Mbiti Kanyolo","doi":"10.1002/ece2.53","DOIUrl":"10.1002/ece2.53","url":null,"abstract":"<p>Despite the prevailing dominance of lithium-ion batteries in consumer electronics and electric vehicle markets, the growing apprehension over lithium availability has ignited a quest for alternative high-energy-density electrochemical energy storage systems. Rechargeable batteries featuring calcium (Ca) metal as negative electrodes (anodes) present compelling prospects, promising notable advantages in energy density, cost-effectiveness, and safety. However, unlocking the full potential of rechargeable Ca metal batteries particularly hinges upon the strategic identification or design of high-energy-density positive electrode (cathode) materials. This imperative task demands expeditious synthetic routes tailored for their meticulous design. In this <i>Perspective</i>, we mainly highlight the development in the cathode materials for calcium batteries and accentuate the unparalleled promise of solid-state metathesis routes in designing a diverse array of high-performance electrode materials.</p>","PeriodicalId":100387,"journal":{"name":"EcoEnergy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece2.53","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141819056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergistic photoelectrocatalytic degradation of tetracycline using a novel Z-scheme Zn0.5Ni0.5Fe2O4/SiNWs heterostructure: Towards sustainable antibiotic remediation 利用新型 Z 型 Zn0.5Ni0.5Fe2O4/SiNWs 异质结构协同光电催化降解四环素:实现可持续的抗生素修复
EcoEnergy Pub Date : 2024-07-10 DOI: 10.1002/ece2.54
Yang Dong, Bo Wang, Dongzhou Xie, Jun Lv, Jiewu Cui, Zhiyong Bao, Guangqing Xu, Wangqiang Shen
{"title":"Synergistic photoelectrocatalytic degradation of tetracycline using a novel Z-scheme Zn0.5Ni0.5Fe2O4/SiNWs heterostructure: Towards sustainable antibiotic remediation","authors":"Yang Dong,&nbsp;Bo Wang,&nbsp;Dongzhou Xie,&nbsp;Jun Lv,&nbsp;Jiewu Cui,&nbsp;Zhiyong Bao,&nbsp;Guangqing Xu,&nbsp;Wangqiang Shen","doi":"10.1002/ece2.54","DOIUrl":"10.1002/ece2.54","url":null,"abstract":"<p>Photoelectrocatalytic technology (PEC) is an emerging green and sustainable technology for treating antibiotic wastewater. However, its effectiveness is limited by the recombination of photogenerated carriers. To address this issue, the Fenton reaction, an advanced oxidation process, can be coupled with PEC technology to enhance the oxidative degradation of antibiotic wastewater. This research involved creating a Zn<sub>0.5</sub>Ni<sub>0.5</sub>Fe<sub>2</sub>O<sub>4</sub>/silicon nanowires (SiNWs) Z-type heterojunction through the spin coating technique, which was then utilized in the PEC coupled Fenton reaction to break down antibiotic wastewater. The inherent electric field and the voltage applied hastened the segregation of <i>e</i><sup>−</sup> and <i>h</i><sup>+</sup> within the system. These advantages make the Zn<sub>0.5</sub>Ni<sub>0.5</sub>Fe<sub>2</sub>O<sub>4</sub>/SiNWs heterojunction highly efficient in removing various antibiotics, including tetracycline (TC), ciprofloxacin (CIP), amoxicillin (AMX), and levofloxacin (LVX). In particular, the Zn<sub>0.5</sub>Ni<sub>0.5</sub>Fe<sub>2</sub>O<sub>4</sub>/SiNWs heterojunction demonstrated an 82.21% degradation efficiency for TC, exhibiting a kinetic constant (<i>k</i>) of 0.02688 min<sup>−1</sup>, a rate 2.82 times (4.80 times) greater than that of SiNWs. Experimental findings reveal that Zn<sub>0.5</sub>Ni<sub>0.5</sub>Fe<sub>2</sub>O<sub>4</sub>/SiNWs exhibit superior light absorption properties and a reduced rate of photogenerated charge recombination. The doping of Zn<sub>0.5</sub>Ni<sub>0.5</sub>Fe<sub>2</sub>O<sub>4</sub> effectively improves the catalytic performance of SiNWs. This research offers fresh insights into researching PEC-coupled Fenton reaction methods for the degradation of antibiotics and paves the way for advancing the creation of more potent photoelectrochemical catalysts in the future.</p>","PeriodicalId":100387,"journal":{"name":"EcoEnergy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece2.54","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141661883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancing electrochemical CO2 reduction with group 11 metal nanoclusters for renewable energy solutions 利用第 11 族金属纳米团簇推进二氧化碳电化学还原,实现可再生能源解决方案
EcoEnergy Pub Date : 2024-07-10 DOI: 10.1002/ece2.56
Sourav Biswas, Yamato Shingyouchi, Masaki Ogami, Maho Kamiyama, Tokuhisa Kawawaki, Yuichi Negishi
{"title":"Advancing electrochemical CO2 reduction with group 11 metal nanoclusters for renewable energy solutions","authors":"Sourav Biswas,&nbsp;Yamato Shingyouchi,&nbsp;Masaki Ogami,&nbsp;Maho Kamiyama,&nbsp;Tokuhisa Kawawaki,&nbsp;Yuichi Negishi","doi":"10.1002/ece2.56","DOIUrl":"10.1002/ece2.56","url":null,"abstract":"<p>Understanding the intricate relationship between structure and properties is paramount in distinguishing nanocluster (NC) materials from their counterparts. Despite the progress in synthesizing new NCs, the sluggish exploration of their potential applications persists due to the difficulty in stabilizing these materials. However, recent investigations have unveiled their remarkable efficacy as catalysts in electrochemical CO<sub>2</sub> reduction reactions, surpassing traditional materials. This discovery, addressing urgent global concerns, has quickly drawn significant attention to this field, leading to its rapid expansion. Hence, there is an urgent need to outline this research landscape and pinpoint effective strategies, marking a significant advancement. In this context, our endeavor is dedicated to offering researchers a thorough understanding of recently synthesized NC materials. We aim to elucidate their distinct structural architectures and associated properties essential for catalyst design. We envision that this systematic review will serve as a guiding beacon for future research endeavors in this burgeoning field.</p>","PeriodicalId":100387,"journal":{"name":"EcoEnergy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece2.56","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141659068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Boosting I–/ I 3 − ${mathrm{I}}_{3}^{-}$ liquid state thermocells through solubility-driven biphasic system optimization 通过溶解度驱动的双相系统优化促进 I-/I3- ${mathrm{I}}_{3}^{-}$ 液态热电池的发展
EcoEnergy Pub Date : 2024-07-10 DOI: 10.1002/ece2.52
Xiangyu Liu, Taiyu Wang, Haobin Ye, Wenjing Nan, Mingyu Chen, Jiale Fang, Feng Ru Fan
{"title":"Boosting I–/\u0000 \u0000 \u0000 \u0000 I\u0000 3\u0000 −\u0000 \u0000 \u0000 ${mathrm{I}}_{3}^{-}$\u0000 liquid state thermocells through solubility-driven biphasic system optimization","authors":"Xiangyu Liu,&nbsp;Taiyu Wang,&nbsp;Haobin Ye,&nbsp;Wenjing Nan,&nbsp;Mingyu Chen,&nbsp;Jiale Fang,&nbsp;Feng Ru Fan","doi":"10.1002/ece2.52","DOIUrl":"10.1002/ece2.52","url":null,"abstract":"<p>Liquid state thermocells (LTCs) offer a promising approach for harvesting low-grade heat. In exploring the impact of concentration difference (Δ<i>C</i><sub>r</sub>) on the Seebeck coefficient (<i>Se</i>) in LTCs, previous studies mainly focused on two strategies: host–guest complexation and thermosensitive crystallization, which involved adding polymers or cation additives for targeted interaction with the redox couple. However, these methods face challenges in scalability and long-term application due to the selection and costs of additives, along with the stability of recognition. This study pioneers a unique strategy that utilizes solubility differences in an organic-aqueous biphasic system. We investigated an electrolyte consisting of an I<sup>−</sup>/<span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msubsup>\u0000 <mi>I</mi>\u0000 <mn>3</mn>\u0000 <mo>−</mo>\u0000 </msubsup>\u0000 </mrow>\u0000 <annotation> ${mathrm{I}}_{3}^{-}$</annotation>\u0000 </semantics></math> redox couple, an organic-aqueous solvent, and ammonium sulfate. This biphasic system enables an enriched concentration of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msubsup>\u0000 <mi>I</mi>\u0000 <mn>3</mn>\u0000 <mo>−</mo>\u0000 </msubsup>\u0000 </mrow>\u0000 <annotation> ${mathrm{I}}_{3}^{-}$</annotation>\u0000 </semantics></math> in the upper phase, thereby enhancing the reduction reaction on the hot side. Our approach achieves a <i>Se</i> of 1.8 mV K<sup>−1</sup> and a maximum output of 120 μW m<sup>−2</sup> K<sup>−2</sup>, representing a substantial improvement, over threefold compared to traditional single-phase systems. Therefore, this cost-effective strategy using a biphasic system establishes a novel pathway for advancing performance of LTCs and presents a promising approach toward achieving carbon neutrality.</p>","PeriodicalId":100387,"journal":{"name":"EcoEnergy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece2.52","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141662700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Double side passivation of phenylethyl ammonium iodide for all perovskite tandem solar cell with efficiency of 26.8% 苯基乙基碘化铵双面钝化用于全包晶串联太阳能电池,效率达 26.8%
EcoEnergy Pub Date : 2024-07-02 DOI: 10.1002/ece2.51
Huan Bi, Jiaqi Liu, Liang Wang, Zheng Zhang, Gaurav Kapil, Shahrir Razey Sahamir, Ajay Kumar Baranwal, Yuyao Wei, Yongge Yang, Dandan Wang, Takeshi Kitamura, Hiroshi Segawa, Qing Shen, Shuzi Hayase
{"title":"Double side passivation of phenylethyl ammonium iodide for all perovskite tandem solar cell with efficiency of 26.8%","authors":"Huan Bi,&nbsp;Jiaqi Liu,&nbsp;Liang Wang,&nbsp;Zheng Zhang,&nbsp;Gaurav Kapil,&nbsp;Shahrir Razey Sahamir,&nbsp;Ajay Kumar Baranwal,&nbsp;Yuyao Wei,&nbsp;Yongge Yang,&nbsp;Dandan Wang,&nbsp;Takeshi Kitamura,&nbsp;Hiroshi Segawa,&nbsp;Qing Shen,&nbsp;Shuzi Hayase","doi":"10.1002/ece2.51","DOIUrl":"10.1002/ece2.51","url":null,"abstract":"<p>All-perovskite tandem solar cells are regarded as the next generation of devices capable of enhancing the solar energy utilization rate. Unlike single-junction perovskite solar cells (PSCs), the efficacy of tandem cells is contingent upon the performance of both the top and bottom cells. In this study, we employed a simultaneous co-modification strategy to incorporate phenylethylammonium iodide (PEAI) at both the top and bottom interfaces of the perovskite film, aiming to boost the top cell's performance. Both experimental and theoretical findings indicate that PEAI not only elevates the perovskite film quality through chemical interactions but also mitigates nonradiative recombination within the device. Consequently, the efficiency of the wide-bandgap (1.77 eV) PSCs based on nickel oxide (NiO<sub><i>x</i></sub>) attained a level of 16.5%. Simultaneously, the all-perovskite tandem solar cells achieved an efficiency of 26.81% and demonstrated superior stability.</p>","PeriodicalId":100387,"journal":{"name":"EcoEnergy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece2.51","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141688047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aluminum vacancy-rich MOF-derived carbon nanosheets for high-capacity and long-life aqueous aluminum-ion battery 富含铝空位的 MOF 衍生碳纳米片用于高容量和长寿命水性铝离子电池
EcoEnergy Pub Date : 2024-06-24 DOI: 10.1002/ece2.49
Jiuzeng Jin, Ruiying Zhang, Xiaodong Zhi, Dongxin Liu, Yun Wang, Zhongmin Feng, Ting Sun
{"title":"Aluminum vacancy-rich MOF-derived carbon nanosheets for high-capacity and long-life aqueous aluminum-ion battery","authors":"Jiuzeng Jin,&nbsp;Ruiying Zhang,&nbsp;Xiaodong Zhi,&nbsp;Dongxin Liu,&nbsp;Yun Wang,&nbsp;Zhongmin Feng,&nbsp;Ting Sun","doi":"10.1002/ece2.49","DOIUrl":"https://doi.org/10.1002/ece2.49","url":null,"abstract":"<p>Eco-friendly and safe aqueous aluminum-ion batteries as energy storage devices with low economic burden, high stability and fast ion transport have been lucubrated deeply in response to the call for sustainable development. However, the poor cycle performance caused by difficult (de-)intercalation hinders the development prospect. In this work, the aluminum vacancy-rich MOF-derived carbon is constructed to achieve reversible aluminum storage during the charge-discharge cycles. The MOF-derived carbon with anti-stacking waxberry-like structure exhibits high capacity (282.1 mAh g<sup>−1</sup> at 50 mA g<sup>−1</sup>) and long cycle performance (84.4% capacity retention rate at 1 A g<sup>−1</sup> after 5000 cycles). Further investigations demonstrate that (de-)intercalation occurs among the vacancies of carbon nanosheets in the form of hydrated aluminum ions. Meanwhile, the introduced nitrogen as energy storage sites contributes part of the capacity. The proposed aluminum vacancy engineering improves the current situation of the capacitive energy storage mode for 2D carbon materials, which may exploit an advanced theoretical model for the design of aqueous batteries.</p>","PeriodicalId":100387,"journal":{"name":"EcoEnergy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece2.49","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142313284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Utilization of sulfonated cellulose membrane for Zn ion hybrid capacitors 利用磺化纤维素膜制造锌离子混合电容器
EcoEnergy Pub Date : 2024-06-11 DOI: 10.1002/ece2.48
Ziyauddin Khan, Divyaratan Kumar, Sanna Lander, Jaywant Phopase, Reverant Crispin
{"title":"Utilization of sulfonated cellulose membrane for Zn ion hybrid capacitors","authors":"Ziyauddin Khan,&nbsp;Divyaratan Kumar,&nbsp;Sanna Lander,&nbsp;Jaywant Phopase,&nbsp;Reverant Crispin","doi":"10.1002/ece2.48","DOIUrl":"10.1002/ece2.48","url":null,"abstract":"<p>Zinc ion hybrid capacitors (ZHCs) are regarded as sustainable energy storage devices, largely due to the abundance of zinc and its compatibility with aqueous electrolytes. Thick glass microfiber separators are commonly employed in ZHCs because they resist penetration by Zn dendrites, a prevalent issue in these devices. However, glass fiber separators not only reduce the volumetric energy but also raise environmental concerns due to their production processes, which generate significant amounts of greenhouse gases. In this study, we propose using a sulfonated cellulose membrane (SCM) derived from softwood cellulose nanofibrils as an eco-friendly and sustainable separator for ZHCs. Utilizing this sulfonated cellulose membrane, we achieved 2000 h of continuous plating/stripping of Zn and more than 95% coulombic efficiency. Additionally, the efficacy of SCM as a separator was validated through the successful deployment of a Zn ion hybrid capacitor, which exhibited specific energies of 42 Wh/kg. The ZHC demonstrated remarkable cyclic stability, enduring over 10 000 cycles with minimal self-discharge behavior. This study highlights the use of a cost-effective, thin, mechanically robust, and highly cross-linked cellulose nanofibrils membrane for ZHCs, showcasing its potential for broader utilization in various energy storage devices.</p>","PeriodicalId":100387,"journal":{"name":"EcoEnergy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece2.48","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141357265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信