{"title":"利用优越的光电催化水净化技术制备α-MnO2@NiMoO4异质结构","authors":"Hongchao Ma, Yan Chen, Huijun Li, Yinghuan Fu, Dedong Sun, Guowen Wang, Xiang Guo, Shixue Dou, Vadivel Subramaniam, Ashish Kumar, Krishnamoorthy Ramachandran, Xinghui Liu","doi":"10.1002/ece2.70003","DOIUrl":null,"url":null,"abstract":"<p>Heterostructure catalyst is highly efficient for photoelectrolytic (PEC) wastewater remediation, while rationally constructing the photoelectrocatalyst with a high-quality interface is still challenging. Herein, a simple hydrothermal process prepares a heterostructure NiMoO<sub>4</sub>@α-MnO<sub>2</sub> with a uniform interface between NiMoO<sub>4</sub> nanosheets and α-MnO<sub>2</sub> nanowires. NiMoO<sub>4</sub>@α-MnO<sub>2</sub> exhibited significant advantages as follows: (1) α-MnO<sub>2</sub> nanowires act as charge transport channels like the arteries that transport nutrients, promoting the migration and separation of induced charges; (2) the pollutants can be electrostatically concentrated to the surface of the NiMoO<sub>4</sub>@α-MnO<sub>2</sub>. Specifically, the gossamer-like NiMoO<sub>4</sub> nanosheets adhering on the surface of the α-MnO<sub>2</sub> have a large surface area, beneficial for electrolyte penetration and utilization of active sites. (3) Unfolded gossamer-like NiMoO<sub>4</sub>, like a vast extended solar panel of an artificial satellite, can harvest more solar energy, generating lots of electron (e<sup>−</sup>)/hole (h<sup>+</sup>) pairs and active species, offering multiple transfer pathways and speeding up the rate of the degradation reaction. The optimized heterostructured NiMoO<sub>4</sub>@α-MnO<sub>2</sub>-3.5 catalysts showed superior PEC activity and remarkable stability for degrading reactive brilliant blue KN-R. Z-scheme heterojunction between α-MnO<sub>2</sub> and NiMoO<sub>4</sub> is proposed based on their energy band structure and free radical quenching experiment.</p>","PeriodicalId":100387,"journal":{"name":"EcoEnergy","volume":"3 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece2.70003","citationCount":"0","resultStr":"{\"title\":\"Fabricating α-MnO2@NiMoO4 Heterostructure Architecture With Superior Photoelectrocatalytic Water Purification\",\"authors\":\"Hongchao Ma, Yan Chen, Huijun Li, Yinghuan Fu, Dedong Sun, Guowen Wang, Xiang Guo, Shixue Dou, Vadivel Subramaniam, Ashish Kumar, Krishnamoorthy Ramachandran, Xinghui Liu\",\"doi\":\"10.1002/ece2.70003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Heterostructure catalyst is highly efficient for photoelectrolytic (PEC) wastewater remediation, while rationally constructing the photoelectrocatalyst with a high-quality interface is still challenging. Herein, a simple hydrothermal process prepares a heterostructure NiMoO<sub>4</sub>@α-MnO<sub>2</sub> with a uniform interface between NiMoO<sub>4</sub> nanosheets and α-MnO<sub>2</sub> nanowires. NiMoO<sub>4</sub>@α-MnO<sub>2</sub> exhibited significant advantages as follows: (1) α-MnO<sub>2</sub> nanowires act as charge transport channels like the arteries that transport nutrients, promoting the migration and separation of induced charges; (2) the pollutants can be electrostatically concentrated to the surface of the NiMoO<sub>4</sub>@α-MnO<sub>2</sub>. Specifically, the gossamer-like NiMoO<sub>4</sub> nanosheets adhering on the surface of the α-MnO<sub>2</sub> have a large surface area, beneficial for electrolyte penetration and utilization of active sites. (3) Unfolded gossamer-like NiMoO<sub>4</sub>, like a vast extended solar panel of an artificial satellite, can harvest more solar energy, generating lots of electron (e<sup>−</sup>)/hole (h<sup>+</sup>) pairs and active species, offering multiple transfer pathways and speeding up the rate of the degradation reaction. The optimized heterostructured NiMoO<sub>4</sub>@α-MnO<sub>2</sub>-3.5 catalysts showed superior PEC activity and remarkable stability for degrading reactive brilliant blue KN-R. Z-scheme heterojunction between α-MnO<sub>2</sub> and NiMoO<sub>4</sub> is proposed based on their energy band structure and free radical quenching experiment.</p>\",\"PeriodicalId\":100387,\"journal\":{\"name\":\"EcoEnergy\",\"volume\":\"3 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece2.70003\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EcoEnergy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ece2.70003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EcoEnergy","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ece2.70003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fabricating α-MnO2@NiMoO4 Heterostructure Architecture With Superior Photoelectrocatalytic Water Purification
Heterostructure catalyst is highly efficient for photoelectrolytic (PEC) wastewater remediation, while rationally constructing the photoelectrocatalyst with a high-quality interface is still challenging. Herein, a simple hydrothermal process prepares a heterostructure NiMoO4@α-MnO2 with a uniform interface between NiMoO4 nanosheets and α-MnO2 nanowires. NiMoO4@α-MnO2 exhibited significant advantages as follows: (1) α-MnO2 nanowires act as charge transport channels like the arteries that transport nutrients, promoting the migration and separation of induced charges; (2) the pollutants can be electrostatically concentrated to the surface of the NiMoO4@α-MnO2. Specifically, the gossamer-like NiMoO4 nanosheets adhering on the surface of the α-MnO2 have a large surface area, beneficial for electrolyte penetration and utilization of active sites. (3) Unfolded gossamer-like NiMoO4, like a vast extended solar panel of an artificial satellite, can harvest more solar energy, generating lots of electron (e−)/hole (h+) pairs and active species, offering multiple transfer pathways and speeding up the rate of the degradation reaction. The optimized heterostructured NiMoO4@α-MnO2-3.5 catalysts showed superior PEC activity and remarkable stability for degrading reactive brilliant blue KN-R. Z-scheme heterojunction between α-MnO2 and NiMoO4 is proposed based on their energy band structure and free radical quenching experiment.