Mechanochemical-Assisted Defect Engineering: Enhanced Post-Synthetic Metal Exchange in MOFs

EcoEnergy Pub Date : 2025-07-07 DOI:10.1002/ece2.70010
Shunli Shi, Caiju Jin, Chenfa Deng, Bingzhen Zhang, Chenzexi Xu, Jie Hu, Jiaxuan Yang, Weiming Xiao, Shuhua Wang, Chao Chen
{"title":"Mechanochemical-Assisted Defect Engineering: Enhanced Post-Synthetic Metal Exchange in MOFs","authors":"Shunli Shi,&nbsp;Caiju Jin,&nbsp;Chenfa Deng,&nbsp;Bingzhen Zhang,&nbsp;Chenzexi Xu,&nbsp;Jie Hu,&nbsp;Jiaxuan Yang,&nbsp;Weiming Xiao,&nbsp;Shuhua Wang,&nbsp;Chao Chen","doi":"10.1002/ece2.70010","DOIUrl":null,"url":null,"abstract":"<p>The post-synthesis metal exchange (PSME) strategy receives substantial attention in the construction of heterometallic mental-organic frameworks (MOFs). However, traditional PSME methods encounter challenges such as prolonged solvothermal incubation and difficulties in introducing secondary metal elements. Thus, developing a rapid, sustainable, and scaled-up PSME approach for MOFs is essential. Herein, we present a mechanochemical-assisted defect engineering strategy that accelerates the PSME process (mechano-PSME). Characterization techniques demonstrate that this strategy swiftly overcomes the energy barriers of the parent MOFs, resulting in the formation of an abundance of defects. This creates an optimal environment for incorporating heterometallics, thus facilitating rapid, batch PSME of MOFs. The experimental results clearly validate the effectiveness of mechano-PSME in producing bimetallic Zr/Hf-based UiO-66, a process challenging to achieve under solvothermal conditions. Additionally, the Zr/Hf-based UiO-66 exhibits improved acidic functionality and exceptional catalytic efficiency in the esterification of levulinic acid. This research paves the way for the sustainable development of functional materials and outlines an ambitious blueprint for innovating multifunctional materials.</p>","PeriodicalId":100387,"journal":{"name":"EcoEnergy","volume":"3 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece2.70010","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EcoEnergy","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ece2.70010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The post-synthesis metal exchange (PSME) strategy receives substantial attention in the construction of heterometallic mental-organic frameworks (MOFs). However, traditional PSME methods encounter challenges such as prolonged solvothermal incubation and difficulties in introducing secondary metal elements. Thus, developing a rapid, sustainable, and scaled-up PSME approach for MOFs is essential. Herein, we present a mechanochemical-assisted defect engineering strategy that accelerates the PSME process (mechano-PSME). Characterization techniques demonstrate that this strategy swiftly overcomes the energy barriers of the parent MOFs, resulting in the formation of an abundance of defects. This creates an optimal environment for incorporating heterometallics, thus facilitating rapid, batch PSME of MOFs. The experimental results clearly validate the effectiveness of mechano-PSME in producing bimetallic Zr/Hf-based UiO-66, a process challenging to achieve under solvothermal conditions. Additionally, the Zr/Hf-based UiO-66 exhibits improved acidic functionality and exceptional catalytic efficiency in the esterification of levulinic acid. This research paves the way for the sustainable development of functional materials and outlines an ambitious blueprint for innovating multifunctional materials.

Abstract Image

机械化学辅助缺陷工程:增强mof的合成后金属交换
合成后金属交换(PSME)策略在异质金属心理有机框架(MOFs)的构建中受到广泛关注。然而,传统的PSME方法面临着溶剂热孵育时间长和引入二次金属元素困难等挑战。因此,为mof开发一种快速、可持续和扩大规模的PSME方法至关重要。在此,我们提出了一种机械化学辅助缺陷工程策略,可以加速PSME过程(mechano-PSME)。表征技术表明,这种策略迅速克服了母体mof的能量障碍,导致大量缺陷的形成。这为异质金属的掺入创造了最佳环境,从而促进了mof的快速、批量PSME。实验结果清楚地验证了机械- psme在生产双金属Zr/ hf基UiO-66方面的有效性,这是在溶剂热条件下难以实现的工艺。此外,基于Zr/ hf的UiO-66在乙酰丙酸酯化反应中表现出更好的酸性官能团和优异的催化效率。本研究为功能材料的可持续发展铺平了道路,勾勒出多功能材料创新的宏伟蓝图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信