EcoEnergy最新文献

筛选
英文 中文
Efficient capture and separation of CO2‐Boosted carbon neutralization enabled by tailorable metal‐organic frameworks: A review 高效捕获和分离二氧化碳--可定制金属有机框架促进碳中和:综述
EcoEnergy Pub Date : 2023-12-22 DOI: 10.1002/ece2.15
Hao Zhang, Zihui Zhou, Yanan Yin, Hong Xu, Yimeng Wang, Kai Yang, Zhijun Zhang, Jianlong Wang, Xiangming He
{"title":"Efficient capture and separation of CO2‐Boosted carbon neutralization enabled by tailorable metal‐organic frameworks: A review","authors":"Hao Zhang, Zihui Zhou, Yanan Yin, Hong Xu, Yimeng Wang, Kai Yang, Zhijun Zhang, Jianlong Wang, Xiangming He","doi":"10.1002/ece2.15","DOIUrl":"https://doi.org/10.1002/ece2.15","url":null,"abstract":"The long‐term development of fossil energy has led to the destruction of carbon balance. Carbon capture technology needs to be used to reduce carbon emissions before clean energy completely replaces fossil energy. Metal‐organic frameworks (MOFs), a porous crystalline material, show great potential in gas adsorption and has attracted great attention. The predictability of MOFs' structure and function also make it possible to use computational methods to advance and accelerate research. This review gives a brief overview of carbon dioxide capture and separation by MOFs, including adsorption and membrane separation. In the future, membrane separation technology is expected to be a crucial area of research for carbon capture applications due to its favorable characteristics such as high treatment efficiency and low carbon footprint, while mixed matrix membranes (MMMs) have been given more attention by scholars due to their lower cost and better separation performance. In summary, developing high‐performance MOFs or MOF derivatives and researching more efficient separation methods, such as the application of MOF‐based MMMs, should be the focus of future research by scholars in this field.","PeriodicalId":100387,"journal":{"name":"EcoEnergy","volume":"37 43","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138946877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Morphology evolution of CoNi‐LDHs synergistically engineered by precipitant and variable cobalt for asymmetric supercapacitor with superior cycling stability 通过沉淀剂和可变钴协同设计的 CoNi-LDHs 形貌演变,用于具有卓越循环稳定性的不对称超级电容器
EcoEnergy Pub Date : 2023-12-22 DOI: 10.1002/ece2.21
Xuan Wang, Hongzhi Ding, Wei Luo, Yi Yu, Qingliang Chen, Bin Luo, Mingjiang Xie, Xuefeng Guo
{"title":"Morphology evolution of CoNi‐LDHs synergistically engineered by precipitant and variable cobalt for asymmetric supercapacitor with superior cycling stability","authors":"Xuan Wang, Hongzhi Ding, Wei Luo, Yi Yu, Qingliang Chen, Bin Luo, Mingjiang Xie, Xuefeng Guo","doi":"10.1002/ece2.21","DOIUrl":"https://doi.org/10.1002/ece2.21","url":null,"abstract":"Cobalt–nickel layered double hydroxides (CoNi‐LDHs) have been extensively synthesized through precipitation methods for their application in supercapacitors (SC). However, the influence of precipitant quantity on both morphology evolution and SC performance has been an underexplored area. This study systematically examines the morphological changes in CoNi‐LDHs by varying the alkaline quantity and evaluates the performance of asymmetric SC. The findings reveal a progressive transformation in the morphology of CoNi‐LDHs with an increase in alkaline content, starting from nanorod (Co1Ni2(OH)2‐1HMA), progressing to nanorod/nansosheet composite (Co1Ni2(OH)2‐4HMA), and ultimately evolving into nanosheet (Co1Ni2(OH)2‐8HMA). This evolution is attributed to the synergetic effect of the precipitant and variable cobalt, which provides multiple valences and induces morphology evolution. The resulting LDHs demonstrate different SC performances: (1) Co1Ni2(OH)2‐1HMA exhibits a maximum capacitance of 1764 F/g, while Co1Ni2(OH)2‐4HMA and Co1Ni2(OH)2‐8HMA show values of 1460 F/g and 1676 F/g, respectively; (2) rate capabilities showcase percentages of 60.5% for Co1Ni2(OH)2‐1HMA, 83.1% for Co1Ni2(OH)2‐4HMA, and 66.3% for Co1Ni2(OH)2‐8HMA; (3) maximum energy densities are recorded at 72.1 Wh/kg for Co1Ni2(OH)2‐1HMA, 41.3 Wh/kg for Co1Ni2(OH)2‐4HMA, and 62.8 Wh/kg for Co1Ni2(OH)2‐8HMA. Particularly, Co1Ni2(OH)2‐8HMA exhibits superlong cycling stability, retaining approximately 99% capacitance after 25000 consecutive charge/discharge cycles at 7.0 A/g. This result underscores its significant potential for efficient energy storage applications.","PeriodicalId":100387,"journal":{"name":"EcoEnergy","volume":"52 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138946288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
2D semiconductor nanosheets for solar photocatalysis 用于太阳能光催化的二维半导体纳米片
EcoEnergy Pub Date : 2023-12-22 DOI: 10.1002/ece2.16
Meng Cai, Yixin Wei, Yukun Li, Xin Li, Shaobin Wang, Guosheng Shao, Peng Zhang
{"title":"2D semiconductor nanosheets for solar photocatalysis","authors":"Meng Cai, Yixin Wei, Yukun Li, Xin Li, Shaobin Wang, Guosheng Shao, Peng Zhang","doi":"10.1002/ece2.16","DOIUrl":"https://doi.org/10.1002/ece2.16","url":null,"abstract":"In the advancing world of graphene, highly anisotropic 2D semiconductor nanosheets, notable for their nanometer‐scale thickness, have emerged as a leading innovation, displaying immense potential in the exploration of renewable and clean energy production. These have garnered significant attention from researchers. The nanosheets are marked by their extraordinary electronic, optical, and chemical attributes, positioning them as attractive foundational components for heterogeneous photocatalysts. This review diligently summarizes both the seminal work and ongoing developments pertaining to 2D semiconductor nanosheets and their application to solar energy within the context of heterogeneous photocatalysis. We begin by detailing the distinctive properties of 2D semiconductor nanosheets, concentrating on their pivotal roles in augmenting photocatalytic efficiency, and explaining the intrinsic mechanisms that govern the migration rate of photogenerated carriers on the material's surface. Subsequently, we delineate the methods employed to synthesize typical 2D semiconductor nanosheets. In alignment with the overarching objective of expanding light absorption capacity and accelerating charge transfer, we also examine the current research on the hybridization techniques involving 2D materials of varied dimensions, as well as their deployment in diverse photocatalytic applications. We conclude by identifying promising avenues and potential challenges that await further exploration in this burgeoning field.","PeriodicalId":100387,"journal":{"name":"EcoEnergy","volume":"3 11","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138944363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergy of defect engineering and curvature effect for porous graphite carbon nitride nanotubes promoted photocatalytic hydrogen evolution 多孔石墨氮化碳纳米管缺陷工程与曲率效应的协同作用促进光催化氢进化
EcoEnergy Pub Date : 2023-12-21 DOI: 10.1002/ece2.20
Liping Guo, Jinyu Gao, Mingxia Li, Ying Xie, Hui Chen, Shijie Wang, Zhenzi Li, Xuepeng Wang, Wei Zhou
{"title":"Synergy of defect engineering and curvature effect for porous graphite carbon nitride nanotubes promoted photocatalytic hydrogen evolution","authors":"Liping Guo, Jinyu Gao, Mingxia Li, Ying Xie, Hui Chen, Shijie Wang, Zhenzi Li, Xuepeng Wang, Wei Zhou","doi":"10.1002/ece2.20","DOIUrl":"https://doi.org/10.1002/ece2.20","url":null,"abstract":"Graphite carbon nitride (g‐C3N4) nanotubes have received extensive attention due to its unique morphology and electronic migration. Herein, the defective porous g‐C3N4 nanotube (DTCN) is prepared through a simple thermal reduction process. The construction of N vacancy and tubular structure can synergistically promote the separation of photogenerated charge carriers. As a result, DTCN demonstrates a higher photocatalytic hydrogen evolution rate (1440 μmol·g−1·h−1), which is 5 times higher than that of the initial g‐C3N4 nanotube (TCN). Importantly, combined with density functional theory calculations and experimental results, it is the first time to prove that the synergy of curvature effect and N vacancy of nanotubes can enhance the adsorption energy of hydrogen and decrease the work function, resulting in more superior photocatalytic performance than the layered structure. This work provides more in‐depth comprehension for the photocatalytic mechanism of nanotube materials, which has inspirational significance for the design of the g‐C3N4 photocatalyst with high performance.","PeriodicalId":100387,"journal":{"name":"EcoEnergy","volume":"44 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138948841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self‐integration exactly constructing oxygen‐modified MoNi alloys for efficient hydrogen evolution 自整合精确构建氧改性镍钴合金,实现高效氢进化
EcoEnergy Pub Date : 2023-12-21 DOI: 10.1002/ece2.19
Yanan Zhou, Wenyang Yu, Hai‐Jun Liu, Ruo-Yao Fan, Guan‐Qun Han, Bin Dong, Yong-Ming Chai
{"title":"Self‐integration exactly constructing oxygen‐modified MoNi alloys for efficient hydrogen evolution","authors":"Yanan Zhou, Wenyang Yu, Hai‐Jun Liu, Ruo-Yao Fan, Guan‐Qun Han, Bin Dong, Yong-Ming Chai","doi":"10.1002/ece2.19","DOIUrl":"https://doi.org/10.1002/ece2.19","url":null,"abstract":"Introducing oxygen atoms into nickel‐based alloys is an effective strategy for constructing water dissociation sites for hydrogen evolution reaction (HER). However, controlling oxygen content to realize the best match of water dissociation and hydrogen adsorption is challenging. Herein, we exploit the self‐integration process of MoNi alloy in molten salts to introduce oxygen atoms, which ultimately leads to the localized generation of robust NiOxHy around the MoNi alloys. Interestingly, Mo is further doped into NiOxHy (Mo‐NiOxHy) to construct an effective active center for water dissociation due to the high mobility in ionic solutions. Owing to the covering and space confinement of molten salt, MoNi alloy is exactly decorated with Mo‐NiOxHy nanosheets. Both physical characterization and density functional theory calculation prove that the electron transport, water dissociation capability, and hydrogen adsorption of MoNi are finely tuned and benefited from the O and Mo doping, thus greatly expediting HER kinetics. Mo‐NiOxHy exhibits a much lower overpotential of 33 mV at 10 mV cm−2 in alkaline electrolyte, even superior to the Pt/C benchmark. Moreover, the final Mo‐NiOxHy requires a low overpotential of 57 mV at 10 mV cm−2 in acidic media. This enhancement is ascribed to the successful assembly of MoNi foam elicited by molten salt.","PeriodicalId":100387,"journal":{"name":"EcoEnergy","volume":"6 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138952924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrothermal model of all‐solid‐state lithium battery with composite solid‐state electrolyte 含复合固态电解质的全固态锂电池的电热模型
EcoEnergy Pub Date : 2023-12-08 DOI: 10.1002/ece2.14
Zhao Liu, Shang Peng, Pairuzha Xiaokaiti, Juan Zhang, Hongxin You, A. Abudula, Guoqing Guan
{"title":"Electrothermal model of all‐solid‐state lithium battery with composite solid‐state electrolyte","authors":"Zhao Liu, Shang Peng, Pairuzha Xiaokaiti, Juan Zhang, Hongxin You, A. Abudula, Guoqing Guan","doi":"10.1002/ece2.14","DOIUrl":"https://doi.org/10.1002/ece2.14","url":null,"abstract":"For secondary batteries, thermal runaway has become the main issue, and how to solve it is full of challenges. In this work, a universal thermal model for lithium ion batteries (LIBs) was proposed, which was validated by using commercially available 18650 batteries as well as testing the electrochemical parameters of a Poly(ethylene oxide)(PEO)–bis(trifluoromethane)sulfonimide lithium salt(LiTFSI)–Li2MnO3(LMO) (PLL) composite solid‐state electrolyte (CSSE), while a computational model was developed for all‐solid‐state LIBs (ASSLIBs) based on PLL CSSE. The simulation results show that the maximum temperature of ASSLIBs based on PLL CSSE and commercial standards are both significantly lower than the thermal runaway temperature of solid‐state electrolyte. However, as the temperature of the battery varies greatly under different operating conditions, it will cause great difficulties in the control of other ancillary components and even finally lead to certain safety issues. Therefore, from the perspective of performance and practical application, the CSSE should be improved toward improving the ionic conductivity at low temperatures to have more commercial prospects, and lower interfacial impedance and a higher lithium ion migration number would also be beneficial for optimizing the thermal behavior of ASSLIBs to achieve better commercial prospects.","PeriodicalId":100387,"journal":{"name":"EcoEnergy","volume":"56 29","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138588195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of ABO4-type photoanodes for photoelectrochemical water splitting 用于光电化学水分解的abo4型光阳极的研制
EcoEnergy Pub Date : 2023-11-27 DOI: 10.1002/ece2.11
Xin Wang, Boyan Liu, Yingjuan Zhang, Teera Butburee, Kostya (Ken) Ostrikov, Songcan Wang, Wei Huang
{"title":"Development of ABO4-type photoanodes for photoelectrochemical water splitting","authors":"Xin Wang,&nbsp;Boyan Liu,&nbsp;Yingjuan Zhang,&nbsp;Teera Butburee,&nbsp;Kostya (Ken) Ostrikov,&nbsp;Songcan Wang,&nbsp;Wei Huang","doi":"10.1002/ece2.11","DOIUrl":"https://doi.org/10.1002/ece2.11","url":null,"abstract":"<p>Photoelectrochemical (PEC) water splitting with zero carbon emissions is a promising technology to solve the global issues of energy shortage and environmental pollution. However, the current development of PEC systems is facing a bottleneck of low solar-to-hydrogen (STH) efficiency (&lt;10%), which cannot meet the demand of large-scale H<sub>2</sub> production. The development of low-cost, highly active, and stable photoanode materials is crucial for high STH efficiency of PEC water splitting. The recent development of BiVO<sub>4</sub> as photoanode materials for PEC water splitting has been a great success, and ABO<sub>4</sub>-type ternary metal oxides with a similar structure to BiVO<sub>4</sub> have high development potential as efficient photoanodes for high-performance PEC water splitting. The design and development of ABO<sub>4</sub> photoanodes for PEC water splitting are critically reviewed with special emphasis on the modification strategies and performance improvement mechanisms of each semiconductor. The comprehensive analysis in this review provides guidelines and insights for the exploration of new high-efficiency photoanodes for solar fuel production.</p>","PeriodicalId":100387,"journal":{"name":"EcoEnergy","volume":"1 1","pages":"108-153"},"PeriodicalIF":0.0,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece2.11","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138468639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Catalytic reactivity descriptors of metal-nitrogen-doped carbon catalysts for electrocatalysis 电催化用金属氮掺杂碳催化剂的催化活性描述符
EcoEnergy Pub Date : 2023-11-27 DOI: 10.1002/ece2.12
Hong Liu, Jiejie Li, Jordi Arbiol, Bo Yang, Pengyi Tang
{"title":"Catalytic reactivity descriptors of metal-nitrogen-doped carbon catalysts for electrocatalysis","authors":"Hong Liu,&nbsp;Jiejie Li,&nbsp;Jordi Arbiol,&nbsp;Bo Yang,&nbsp;Pengyi Tang","doi":"10.1002/ece2.12","DOIUrl":"https://doi.org/10.1002/ece2.12","url":null,"abstract":"<p>Metal-nitrogen-doped carbon material have sparked enormous attentions as they show excellent electrocatalytic performance and provide a prototype for mechanistic understandings of electrocatalytic reactions. Researchers spare no effort to find catalytic reactivity “descriptor”, which is correlated with catalytical properties and could be utilized for guiding the rational design of high-performance catalysts. In recent years, benefited from the development of computational technology, theoretical calculation came into being as a powerful tool to understand catalytic mechanisms from an atomic level as well as to accelerate the process of finding a catalytic reactivity descriptor and promoting the development of effective catalysts. In the present review, we provide the latest theoretical research toward energetic and electronic descriptors for metal-nitrogen-doped carbon (M-N-C) materials, which have shown excellent electrocatalytic performance and provide a prototype for the mechanistic understanding of electrocatalytic reactions. This review uses density functional theory calculation and the most advanced machine learning method to describe the exploration of four kinds of electrocatalytic reaction descriptors, namely oxygen reduction reaction, carbon dioxide reduction reaction, hydrogen evolution reaction, and nitrogen reduction reaction. The aim of this review is to inspire the future design of high-efficiency M-N-C catalysts by providing in-depth insights into the electrocatalytic activity of these materials.</p>","PeriodicalId":100387,"journal":{"name":"EcoEnergy","volume":"1 1","pages":"154-185"},"PeriodicalIF":0.0,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece2.12","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138468640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fully exposed Pd species on nanodiamond/graphene hybrid support for the efficient toluene hydrogenation reaction 完全暴露在纳米金刚石/石墨烯杂化载体上的Pd物种用于高效的甲苯加氢反应
EcoEnergy Pub Date : 2023-11-23 DOI: 10.1002/ece2.13
Yue Wang, Linlin Wang, Jingwang Zhang, Xiangbin Cai, Jiangyong Diao, Lini Yang, Hongyang Liu
{"title":"Fully exposed Pd species on nanodiamond/graphene hybrid support for the efficient toluene hydrogenation reaction","authors":"Yue Wang,&nbsp;Linlin Wang,&nbsp;Jingwang Zhang,&nbsp;Xiangbin Cai,&nbsp;Jiangyong Diao,&nbsp;Lini Yang,&nbsp;Hongyang Liu","doi":"10.1002/ece2.13","DOIUrl":"https://doi.org/10.1002/ece2.13","url":null,"abstract":"<p>Liquid organic hydrogen carriers have emerged as promising hydrogen storage systems, offering notable advantages over conventional storage and utilization efficiency methods. However, designing a catalyst that operates at low temperatures and remains cost-effective poses a significant challenge. We successfully synthesized Pd species (single atoms, fully exposed clusters, and nanoparticles) on a nanodiamond/graphene (ND@G) hybrid support for toluene hydrogenation. The structure of as-developed Pd catalyst was investigated by HAADF-STEM, X-ray absorption fine structure, Raman, XRD, XPS, and other characterizations. Remarkably, the Pd<sub>n</sub>/ND@G catalyst achieved a toluene conversion rate of 99.3% (100°C, 2.0 MPa H<sub>2</sub>) without loss of catalytic ability after 5 runs, which exhibited excellent catalytic performance and stable activity. Furthermore, the Pd<sub>n</sub>/ND@G catalyst exhibited an apparent activation energy as low as 62.36 ± 3.33 kJ mol<sup>−1</sup> and an initial turnover frequency of 33.1 h<sup>−1</sup> at 100°C. By adjusting the size and metal-dependent effects, we have achieved enhanced catalytic performance for toluene hydrogenation, thus paving the way for the design of efficient liquid organic hydrogen storage catalysts.</p>","PeriodicalId":100387,"journal":{"name":"EcoEnergy","volume":"1 1","pages":"207-214"},"PeriodicalIF":0.0,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece2.13","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138468644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Perspective on the interfacial engineering for electrocatalytic N2 to NH3 conversion from catalysts to systems 催化剂-体系电催化N2 - NH3转化界面工程研究进展
EcoEnergy Pub Date : 2023-11-13 DOI: 10.1002/ece2.10
Seokwoo Choe, Nayun Kim, Youn Jeong Jang
{"title":"Perspective on the interfacial engineering for electrocatalytic N2 to NH3 conversion from catalysts to systems","authors":"Seokwoo Choe,&nbsp;Nayun Kim,&nbsp;Youn Jeong Jang","doi":"10.1002/ece2.10","DOIUrl":"10.1002/ece2.10","url":null,"abstract":"<p>Ammonia (NH<sub>3</sub>) has received significant attention due to its increasing demand as a key commodity for industrial chemical production, a green fuel, and a hydrogen (H<sub>2</sub>) carrier. Electrochemical nitrogen (N<sub>2</sub>) reduction reaction (ENRR) emerges as the most attractive pathway to produce NH<sub>3</sub>. The process utilizes H<sub>2</sub>O as a proton source under mild temperature and pressure, which can reduce CO<sub>2</sub> emissions and energy input compared to the traditional Haber-Bosch process. However, ENRR is severely insufficient for practical applications due to its kinetically sluggish steps compared to its competitive hydrogen evolution reaction. Also, the imbalanced reactant concentrations of N<sub>2</sub> and H<sub>2</sub>O, resulting from the low N<sub>2</sub> solubility, and oppositely, free H<sub>2</sub>O accessibility toward catalysts, cause the ineffective three-phase-boundary that acts as active sites for ENRR. To overcome these challenges, it is essential to perform interfacial engineering for each part of the catalyst and reaction environment. In this perspective, recent advances in interfacial engineering are examined and critically reviewed, and further research directions are proposed to develop ENRR significantly. The sections cover catalytic active site modification, hydrophobic/hydrophilic control, electrolyte engineering, and system design. The insights and prospects in this perspective will be effective for developing ENRR in a scientific and practical manner.</p>","PeriodicalId":100387,"journal":{"name":"EcoEnergy","volume":"1 1","pages":"3-15"},"PeriodicalIF":0.0,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece2.10","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136347199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信