Recent advances and challenges of cathode materials in aqueous rechargeable zinc-ion batteries

EcoEnergy Pub Date : 2024-09-10 DOI:10.1002/ece2.61
Yihui Zou, Jin Sun, Yulong Chi, Xueyan Cheng, Dongjiang Yang
{"title":"Recent advances and challenges of cathode materials in aqueous rechargeable zinc-ion batteries","authors":"Yihui Zou,&nbsp;Jin Sun,&nbsp;Yulong Chi,&nbsp;Xueyan Cheng,&nbsp;Dongjiang Yang","doi":"10.1002/ece2.61","DOIUrl":null,"url":null,"abstract":"<p>Aqueous Zn-ion battery (AZIB) is a new type of secondary battery developed in recent years. It has the advantages of high energy density, high power density, efficient and safe discharge process, non-toxic and cheap battery materials, simple preparation process, etc., and has high application prospects in emerging large-scale energy storage fields such as electric vehicles and energy storage grids. Currently, one of the main factors hindering the further development of AZIBs batteries is the lack of suitable cathode materials. This article briefly introduces the advantages and energy storage mechanisms of aqueous zinc-ion batteries. Based on the crucial role of cathode materials in AZIBs, several common cathode materials (such as manganese-based compounds, vanadium-based compounds, nickel/cobalt-based compounds, and lithium/sodium intercalated compounds) are reviewed, and strategies to improve their conductivity and cycling stability are summarized, focusing on modification strategies such as structural regulation, nanoengineering, doping modification, and compounding with high-conductivity materials. The article also points out the key development directions for cathode materials of AZIBs in the future.</p>","PeriodicalId":100387,"journal":{"name":"EcoEnergy","volume":"2 4","pages":"599-629"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece2.61","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EcoEnergy","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ece2.61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aqueous Zn-ion battery (AZIB) is a new type of secondary battery developed in recent years. It has the advantages of high energy density, high power density, efficient and safe discharge process, non-toxic and cheap battery materials, simple preparation process, etc., and has high application prospects in emerging large-scale energy storage fields such as electric vehicles and energy storage grids. Currently, one of the main factors hindering the further development of AZIBs batteries is the lack of suitable cathode materials. This article briefly introduces the advantages and energy storage mechanisms of aqueous zinc-ion batteries. Based on the crucial role of cathode materials in AZIBs, several common cathode materials (such as manganese-based compounds, vanadium-based compounds, nickel/cobalt-based compounds, and lithium/sodium intercalated compounds) are reviewed, and strategies to improve their conductivity and cycling stability are summarized, focusing on modification strategies such as structural regulation, nanoengineering, doping modification, and compounding with high-conductivity materials. The article also points out the key development directions for cathode materials of AZIBs in the future.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信