DeCarbonPub Date : 2024-12-01DOI: 10.1016/j.decarb.2024.100081
Qi Zhao , Kuan Sun , Xun Wang , Qing Wang , John Wang
{"title":"Editor's note to “Examining green-sustainable approaches for recycling of lithium-ion batteries” [DeCarbon 3 (2024) 100034]","authors":"Qi Zhao , Kuan Sun , Xun Wang , Qing Wang , John Wang","doi":"10.1016/j.decarb.2024.100081","DOIUrl":"10.1016/j.decarb.2024.100081","url":null,"abstract":"","PeriodicalId":100356,"journal":{"name":"DeCarbon","volume":"6 ","pages":"Article 100081"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143131254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
DeCarbonPub Date : 2024-12-01DOI: 10.1016/j.decarb.2024.100082
Qilin Huang , Yulin Gao , Jianguo Sun , Binbin Liu , Ximeng Liu , Yuepeng Pang , Yu Liu , John Wang
{"title":"Editor's note to “Host-guest regulations in functionalized metal and covalent organic frameworks raise the performance of lithium sulfur batteries” [DeCarbon 4 (2024) 100049]","authors":"Qilin Huang , Yulin Gao , Jianguo Sun , Binbin Liu , Ximeng Liu , Yuepeng Pang , Yu Liu , John Wang","doi":"10.1016/j.decarb.2024.100082","DOIUrl":"10.1016/j.decarb.2024.100082","url":null,"abstract":"","PeriodicalId":100356,"journal":{"name":"DeCarbon","volume":"6 ","pages":"Article 100082"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143131825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
DeCarbonPub Date : 2024-12-01DOI: 10.1016/j.decarb.2024.100078
Peirong Li , Yun Huang , Ao Xia , Xianqing Zhu , Xun Zhu , Qiang Liao
{"title":"Editor's note to “Bio-decarbonization by microalgae: a comprehensive analysis of CO2 transport in photo-bioreactor” [DeCarbon 2 (2023) 100016]","authors":"Peirong Li , Yun Huang , Ao Xia , Xianqing Zhu , Xun Zhu , Qiang Liao","doi":"10.1016/j.decarb.2024.100078","DOIUrl":"10.1016/j.decarb.2024.100078","url":null,"abstract":"","PeriodicalId":100356,"journal":{"name":"DeCarbon","volume":"6 ","pages":"Article 100078"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143150086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
DeCarbonPub Date : 2024-10-15DOI: 10.1016/j.decarb.2024.100076
Haosong Yang , Xueyan Li , Kang Fu , Wenxu Shang , Kai Sun , Zhi Yang , Guojun Hu , Peng Tan
{"title":"Behavioral description of lithium-ion batteries by multiphysics modeling","authors":"Haosong Yang , Xueyan Li , Kang Fu , Wenxu Shang , Kai Sun , Zhi Yang , Guojun Hu , Peng Tan","doi":"10.1016/j.decarb.2024.100076","DOIUrl":"10.1016/j.decarb.2024.100076","url":null,"abstract":"<div><div>Upgrades to power systems and the rapid growth of electric vehicles significantly heighten the importance of lithium-ion batteries (LiBs) in energy systems. As a complex dynamic system, the charging and discharging process of LiBs involves the evolution of multiphysics fields, such as concentration, electricity, and stress. For quantitative analysis of the internal mechanisms of LiBs, as well as the development guidance and performance prediction of high-performance batteries, modeling has advantages that cannot be matched by traditional experimental methods. Major research efforts in the past decades have made significant strides in modeling the internal processes and physical field evolution of LiBs. Importantly, the scattered ideas need to be integrated into a structured framework to form a complete LiBs multi-physical field model. This work reviews important advances in LiBs modeling from the perspectives of describing the internal processes of the battery and portraying the evolution of the physical field. First, quantitative descriptions of the charging and discharging behaviors and the side reactions are reviewed to investigate the battery reaction mechanisms. In addition, the characterization of the evolution of the stress and temperature fields within the battery as well as the coupling between them and the internal reactions are discussed. Finally, some suggestions for future improvements in the modeling are given, ranging from equation optimization to parameter acquisition and the application of artificial intelligence. It is hoped that this work will facilitate the development of models with sufficient accuracy and efficient computational cost to provide guidance for the improvement of LiBs.</div></div>","PeriodicalId":100356,"journal":{"name":"DeCarbon","volume":"6 ","pages":"Article 100076"},"PeriodicalIF":0.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142531528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
DeCarbonPub Date : 2024-09-30DOI: 10.1016/j.decarb.2024.100075
Feng Wang , Delun Guan , Chuncen Wu , Xiuqin Zhang , Guoqiang Wang
{"title":"Numerical study on induction heating enhanced methanol steam reforming for hydrogen production","authors":"Feng Wang , Delun Guan , Chuncen Wu , Xiuqin Zhang , Guoqiang Wang","doi":"10.1016/j.decarb.2024.100075","DOIUrl":"10.1016/j.decarb.2024.100075","url":null,"abstract":"<div><div>Electromagnetic induction heating technology, characterized by its non-contact thermal heat transfer, diminished thermal inertia, and facile temperature management, is applied in this study to enhance catalytic methanol steam reforming (MSR) reaction process. A two-dimensional reactor model was developed integrating electromagnetic field coupling with MSR reactions, fluid dynamics and heat transfer. In the reactor, heat is induced instantaneously on the magnetic material through an electromagnetic induction process, which generated by renewable electricity. Results showed that the Internal - Double Row Cylinder (IN-DRC, cylinder means that the shape of induction heating element is cylindrical.) highest heating efficiency is 38.3%, which is limited by the kinetics of MSR reaction. Here, thermal efficiency reaches its maximum with the reaction channel outlet temperature reaching about 580 K. Internal - Double Row Cylinder (IN-DRC) and Internal - Double Row Ball (IN-DRB, ball means that the shape of induction heating element is spherical) methanol conversions are virtually identical, with a maximum value close to 100%. Furthermore, the findings that the adoption of internal induced heating, in contrast to external heating, across the four reactor designs can effectively mitigate temperature gradient within the reactors. This reduction in thermal disparity significantly amplifies methanol conversion within the reactor, thereby markedly enhancing its overall performance in hydrogen production.Therefore, non-contact internal induction heating method has the potential for substantially hydrogen production processes.</div></div>","PeriodicalId":100356,"journal":{"name":"DeCarbon","volume":"6 ","pages":"Article 100075"},"PeriodicalIF":0.0,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142426682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
DeCarbonPub Date : 2024-09-14DOI: 10.1016/j.decarb.2024.100074
Mohmmad Khalid, Biswajit Samir De, Samaneh Shahgaldi
{"title":"Electrocatalytic lignin oxidation for hydrogen and fine chemical co-production using platinized nickel foam in a 3D printed reactor","authors":"Mohmmad Khalid, Biswajit Samir De, Samaneh Shahgaldi","doi":"10.1016/j.decarb.2024.100074","DOIUrl":"10.1016/j.decarb.2024.100074","url":null,"abstract":"<div><div>Biomass electrooxidation has garnered much attention in recent years, owing to its potential to circumvent greenhouse gas emissions. Substituting the sluggish water oxidation with biomass oxidizable species such as lignin at anode is thermodynamically more favorable, enabling energy efficient hydrogen production and concomitant fine chemicals. The present study shows the organosolv lignin electrooxidation in an additively manufactured 3D printed reactor (3DPR) consisting of platinized nickel foam (PtNF) as anode and cathode and compared with commercial hardware electrolyzer (CHE). The electrolysis of organosolv lignin in 3DPR outperformed CHE by achieving 1.23 times higher current at an applied voltage range from 0 to 2.2 V with a membrane (Nafion 115) interposed between anode and cathode under a continuous flow of lignin feed at the anode. The chronoamperometry study reveals a mixture of diverse aromatic compounds, including vanillic acid, syringic acid, 3,5-dimethoxy-4-hydroxyacetophenone, 2-hydroxyacetophenone, 4-ethycathecol, and 2,6-dimethoxyphenol in anolyte, and sinapic acid and vanillin acetate in catholyte. Thus, realizing renewable biomass electrolysis in the 3DPR is an intriguing strategy for the co-production of hydrogen and fine aromatic chemicals.</div></div>","PeriodicalId":100356,"journal":{"name":"DeCarbon","volume":"6 ","pages":"Article 100074"},"PeriodicalIF":0.0,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949881324000404/pdfft?md5=9e62c42a92da7b2074a93a26ccc101db&pid=1-s2.0-S2949881324000404-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142310965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
DeCarbonPub Date : 2024-08-27DOI: 10.1016/j.decarb.2024.100073
Anjana Raj Raju, Andrew Danis, Steen B. Schougaard
{"title":"Investigating mass transport in Li-ion battery electrodes using SECM and SICM","authors":"Anjana Raj Raju, Andrew Danis, Steen B. Schougaard","doi":"10.1016/j.decarb.2024.100073","DOIUrl":"10.1016/j.decarb.2024.100073","url":null,"abstract":"<div><p>Lithium-ion batteries (LIBs) are indispensable as global energy production transitions to sustainable production. Nevertheless, the use of LIBs in renewable energy storage applications is challenging due to their limited power densities. To comprehend the origin of this limitation, it is crucial to investigate the effect of electrode architecture on the Li<sup>+</sup> ion transport within their pores (solution-phase). In this work, the solution phase transport in various porous Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub> (LTO) films was investigated using scanning ion conductance microscopy (SICM) and scanning electrochemical microscopy (SECM). When the porosity of LTO film increases, SECM and SICM approach curves show an increase in current. This is attributed to the ion transport through the film pores. The 2D topographical mapping using both techniques shows their ability to detect the LTO film's heterogeneity. Most importantly, this work gives insight into the complementary nature of the two scanning probe techniques as demonstrated by the comparable MacMullin numbers.</p></div>","PeriodicalId":100356,"journal":{"name":"DeCarbon","volume":"6 ","pages":"Article 100073"},"PeriodicalIF":0.0,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949881324000398/pdfft?md5=4bb8fdc9af33243c06ba30fffb97d7e6&pid=1-s2.0-S2949881324000398-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142230690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
DeCarbonPub Date : 2024-08-10DOI: 10.1016/j.decarb.2024.100066
Barham Thiam, Oumarou Savadogo
{"title":"Effects of silico-tungstic acid on the pseudo capacitive properties of manganese oxide for electrochemical capacitors applications","authors":"Barham Thiam, Oumarou Savadogo","doi":"10.1016/j.decarb.2024.100066","DOIUrl":"10.1016/j.decarb.2024.100066","url":null,"abstract":"<div><p>In this work manganese oxide (MnO<sub>2</sub>) is modified with silico-tungstic acid (STA). Three samples are synthesized by the co-precipitation method. The powders obtained after elaboration are characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) imaging coupled to Electron Dispersive Spectroscopy (EDS) analysis and Brunauer-Emmet-Teller (BET) for their surface area determination. The effect of the modification of the manganese oxide with STA on its surface is determined. It is shown that MnO<sub>2</sub> modified with STA exhibits better cumulative high specific surface areas and mesoporous volumes areas. For example, the sample fabricates with 10% STA (MnO<sub>2</sub> – 10% STA) has a BET surface area of 153.6 m<sup>2</sup> g<sup>−1</sup> and volume area 0.92 cm<sup>3</sup> g<sup>−1</sup> whereas the sample without STA (MnO<sub>2</sub> – 0% STA) has a surface area of 132.57 m<sup>2</sup> g<sup>−1</sup> and a mesoporous area of 0.26 cm<sup>3</sup> g<sup>−1</sup>. The electrochemical performance analysis of the different working electrodes prepared for super-capacitors applications is carried out using cyclic voltammetry (CV)., using a solution of 0.5 M K<sub>2</sub>SO<sub>4</sub> as an electrolyte in potential range of −0.4 and 0.9 V at a sweep speed of 10 mV/s. The CV results are correlated to those of the BET surface and mesoporous areas values Accordingly, it is shown that samples spiked with STA exhibit higher electrochemical double layer capacitance than those of none modified with STA. These measurements respectively give 38 F g<sup>−1</sup>, and 181 F g<sup>−1</sup> for MnO<sub>2</sub> without STA (MnO<sub>2</sub> – 0% STA), and MnO<sub>2</sub> modified with 10% STA (MnO<sub>2</sub> – 5% STA).</p></div>","PeriodicalId":100356,"journal":{"name":"DeCarbon","volume":"6 ","pages":"Article 100066"},"PeriodicalIF":0.0,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949881324000325/pdfft?md5=c8d04f92e49af34586176c4a2d7ac1c5&pid=1-s2.0-S2949881324000325-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142230689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
DeCarbonPub Date : 2024-08-04DOI: 10.1016/j.decarb.2024.100065
Changlong Du , Ying Zhang , Gengping Wan , Lihong Wu , Liang Li , Pengpeng Mou , Lianrui Li , Hualin Xiong , Guizhen Wang
{"title":"Multi-interfaced FeCoNi@C/carbon cloth composites for eliminating electromagnetic wave pollution","authors":"Changlong Du , Ying Zhang , Gengping Wan , Lihong Wu , Liang Li , Pengpeng Mou , Lianrui Li , Hualin Xiong , Guizhen Wang","doi":"10.1016/j.decarb.2024.100065","DOIUrl":"10.1016/j.decarb.2024.100065","url":null,"abstract":"<div><p>To tackle the increasing electromagnetic pollution, new and efficient electromagnetic wave absorption (EWA) and shielding (EWS) materials are urgently needed. Multi-component synergism and complex microstructure design are effective measures to improve the EWA and EWS properties. However, how to implement the above designs still faces huge challenges. Herein, multi-interface carbon-coated FeCoNi nanoneedles grown on carbon cloth (FeCoNi@C/CC) were synthesized by a combination of hydrothermal process and chemical vapor deposition (CVD) technology with the concept of “green synthesis”. Using acetylene as the carbon source and atmosphere, the FeCoNi ternary hydroxide can be transformed into a multiple magnetic component (Fe<sub>3</sub>O<sub>4</sub>, Ni, and Co metals) by simple annealing. Simultaneously, a uniform carbon layer is formed on the surface, resulting in a composite system with a variety of heterogeneous interfaces and loss mechanisms. Additionally, the dielectric and magnetic loss capacities can be effectively adjusted by changing the temperature of CVD. The optimized FeCoNi@C/CC as filler exhibits remarkable EWA performance with a minimum reflection loss of −69.3 dB at a thickness of 1.82 mm and a maximum effective absorption bandwidth of 6.80 GHz. Moreover, the composites as an integrated component also show a fascinating electromagnetic interference shielding efficiency of 42.2 dB. This work provides a guide for the structural design of high-performance electromagnetic protection materials with multi-heterogeneous interfaces.</p></div>","PeriodicalId":100356,"journal":{"name":"DeCarbon","volume":"6 ","pages":"Article 100065"},"PeriodicalIF":0.0,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949881324000313/pdfft?md5=a5c2abb003953c59bf9d965db86c6a06&pid=1-s2.0-S2949881324000313-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141979202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}