Baofei Sun , Haowei Xu , Yanyi Huang , Daofu Wu , Heng Luo , Faguang Kuang , Hongmei Ran , Wei Chen , Liqin Gao , Xiaosheng Tang
{"title":"Halogen sites regulation in lead-free AgSb-based perovskites for efficient photocatalytic CO2 reduction","authors":"Baofei Sun , Haowei Xu , Yanyi Huang , Daofu Wu , Heng Luo , Faguang Kuang , Hongmei Ran , Wei Chen , Liqin Gao , Xiaosheng Tang","doi":"10.1016/j.decarb.2024.100095","DOIUrl":null,"url":null,"abstract":"<div><div>Although the lead-free halide double perovskites (DPs) have shown great promise for the photocatalytic reduction of CO<sub>2</sub>, the catalytic performance is still far from satisfactory. In this work, lead-free Cs<sub>2</sub>AgSbX<sub>6</sub> (X = Cl, Br, I) DPs nanocrystals (NCs) are prepared by a modified ligand-assisted reprecipitation (LARP) approach at room temperature. The crystal surface, shape, and optoelectronic properties of the AgSb-based DPs are modified using halogen modulation technique. Moreover, a series of Cs<sub>2</sub>AgSbX<sub>6</sub> perovskites NCs are utilized as efficient catalysts for the photocatalytic CO<sub>2</sub> reduction. Among them, the Cs<sub>2</sub>AgSbBr<sub>6</sub> NCs demonstrate the optimal CO<sub>2</sub> photoreduction activity with CO and CH<sub>4</sub> evolutions of 366 and 49 μmol g<sup>−1</sup> respectively under 3h irradiation. Additionally, using the in-situ DRIFTS research, the surface reaction intermediates were precisely identified and dynamically tracked. This study suggests the potential of the lead-free halide DPs NCs as an important platform for the practical solar-to-fuel conversions.</div></div>","PeriodicalId":100356,"journal":{"name":"DeCarbon","volume":"7 ","pages":"Article 100095"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DeCarbon","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949881324000611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Although the lead-free halide double perovskites (DPs) have shown great promise for the photocatalytic reduction of CO2, the catalytic performance is still far from satisfactory. In this work, lead-free Cs2AgSbX6 (X = Cl, Br, I) DPs nanocrystals (NCs) are prepared by a modified ligand-assisted reprecipitation (LARP) approach at room temperature. The crystal surface, shape, and optoelectronic properties of the AgSb-based DPs are modified using halogen modulation technique. Moreover, a series of Cs2AgSbX6 perovskites NCs are utilized as efficient catalysts for the photocatalytic CO2 reduction. Among them, the Cs2AgSbBr6 NCs demonstrate the optimal CO2 photoreduction activity with CO and CH4 evolutions of 366 and 49 μmol g−1 respectively under 3h irradiation. Additionally, using the in-situ DRIFTS research, the surface reaction intermediates were precisely identified and dynamically tracked. This study suggests the potential of the lead-free halide DPs NCs as an important platform for the practical solar-to-fuel conversions.