Reducing the impact of dynamic wireless charging of electric vehicles on the grid through renewable power integration

K. Qiu, H. Ribberink, E. Entchev
{"title":"Reducing the impact of dynamic wireless charging of electric vehicles on the grid through renewable power integration","authors":"K. Qiu,&nbsp;H. Ribberink,&nbsp;E. Entchev","doi":"10.1016/j.decarb.2024.100092","DOIUrl":null,"url":null,"abstract":"<div><div>Electrification of roadways using dynamic wireless charging (DWC) technology can provide an effective solution to range anxiety, high battery costs and long charging times of electric vehicles (EVs). With DWC systems installed on roadways, they constitute a charging infrastructure or electrified roads (eRoads) that have many advantages. For instance, the large battery size of heavy-duty EVs can significantly be downsized due to charging-while-driving. However, a high power demand of the DWC system, especially during traffic rush periods, could lead to voltage instability in the grid and undesirable power demand curves. In this paper, a model for the power demand is developed to predict the DWC system's power demand at various levels of EV penetration rate. The DWC power demand profile in the chosen 550 ​km section of a major highway in Canada is simulated. Solar photovoltaic (PV) panels are integrated with the DWC, and the integrated system is optimized to mitigate the peak power demand on the electrical grid. With solar panels of 55,000 ​kW rated capacity installed along roadsides in the study region, the peak power demand on the electrical grid is reduced from 167.5 to 136.1 ​MW or by 18.7 ​% at an EV penetration rate of 30 ​% under monthly average daily solar radiation in July. It is evidenced that solar PV power has effectively smoothed the peak power demand on the grid. Moreover, the locally generated renewable power could help ease off expensive grid upgrades and expansions for the eRoad. Also, the economic feasibility of the solar PV integrated DWC system is assessed using cost analysis metrics.</div></div>","PeriodicalId":100356,"journal":{"name":"DeCarbon","volume":"7 ","pages":"Article 100092"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DeCarbon","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949881324000581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Electrification of roadways using dynamic wireless charging (DWC) technology can provide an effective solution to range anxiety, high battery costs and long charging times of electric vehicles (EVs). With DWC systems installed on roadways, they constitute a charging infrastructure or electrified roads (eRoads) that have many advantages. For instance, the large battery size of heavy-duty EVs can significantly be downsized due to charging-while-driving. However, a high power demand of the DWC system, especially during traffic rush periods, could lead to voltage instability in the grid and undesirable power demand curves. In this paper, a model for the power demand is developed to predict the DWC system's power demand at various levels of EV penetration rate. The DWC power demand profile in the chosen 550 ​km section of a major highway in Canada is simulated. Solar photovoltaic (PV) panels are integrated with the DWC, and the integrated system is optimized to mitigate the peak power demand on the electrical grid. With solar panels of 55,000 ​kW rated capacity installed along roadsides in the study region, the peak power demand on the electrical grid is reduced from 167.5 to 136.1 ​MW or by 18.7 ​% at an EV penetration rate of 30 ​% under monthly average daily solar radiation in July. It is evidenced that solar PV power has effectively smoothed the peak power demand on the grid. Moreover, the locally generated renewable power could help ease off expensive grid upgrades and expansions for the eRoad. Also, the economic feasibility of the solar PV integrated DWC system is assessed using cost analysis metrics.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信