{"title":"Generalized Confidence Interval for the Difference Between Percentiles of Birnbaum–Saunders Distributions and Its Application to PM2.5 in Thailand","authors":"Warisa Thangjai, Sa-Aat Niwitpong, Suparat Niwitpong","doi":"10.1155/2024/2599243","DOIUrl":"https://doi.org/10.1155/2024/2599243","url":null,"abstract":"<p>The Birnbaum–Saunders distribution is of particular interest for statistical inference. This distribution represents the failure time distribution in engineering. In addition, the Birnbaum–Saunders distribution is commonly used in different areas of science and engineering. Percentiles are a frequently employed statistical concept. Percentiles help ascertain the position of an observation concerning the percentage of data points below it. These percentiles serve as indicators of both the central tendency and the dispersion of data. While comparing two data distributions, the mean is typically the most dependable parameter for describing the population. However, in situations where the distribution exhibits significant skewness, percentiles may sometimes offer a more reliable representation. Herein, the confidence intervals for the difference between percentiles of Birnbaum–Saunders distributions were constructed by the generalized confidence interval (GCI) approach, the bootstrap approach, the Bayesian approach, and the highest posterior density (HPD) approach. A Monte Carlo simulation was conducted to evaluate the performance of the confidence intervals. The performance was considered via coverage probability and average width. The findings suggest that utilizing the GCI approach is advisable for estimating confidence intervals for the disparity between two percentiles. Ultimately, the outcomes of the simulation investigation, coupled with an application in the field of environmental sciences, were outlined.</p>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"2024 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/2599243","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141536861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ana Paula Nascimento, Alexandra Oliveira, Brígida Mónica Faria, Rui Pimenta, Mónica Vieira, Cristina Prudêncio, Helena Bacelar-Nicolau
{"title":"Affinity Coefficient for Clustering Autoregressive Moving Average Models","authors":"Ana Paula Nascimento, Alexandra Oliveira, Brígida Mónica Faria, Rui Pimenta, Mónica Vieira, Cristina Prudêncio, Helena Bacelar-Nicolau","doi":"10.1155/2024/5540143","DOIUrl":"https://doi.org/10.1155/2024/5540143","url":null,"abstract":"<p>In various fields, such as economics, finance, bioinformatics, geology, and medicine, namely, in the cases of electroencephalogram, electrocardiogram, and biotechnology, cluster analysis of time series is necessary. The first step in cluster applications is to establish a similarity/dissimilarity coefficient between time series. This article introduces an extension of the affinity coefficient for the autoregressive expansions of the invertible autoregressive moving average models to measure their similarity between them. An application of the affinity coefficient between time series was developed and implemented in R. Cluster analysis is performed with the corresponding distance for the estimated simulated autoregressive moving average of order one. The primary findings indicate that processes with similar forecast functions are grouped (in the same cluster) as expected concerning the affinity coefficient. It was also possible to conclude that this affinity coefficient is very sensitive to the behavior changes of the forecast functions: processes with small different forecast functions appear to be well separated in different clusters. Moreover, if the two processes have at least an infinite number of <i>π</i>- weights with a symmetric signal, the affinity value is also symmetric.</p>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"2024 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/5540143","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141245921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Iqbal M. Batiha, Iqbal H. Jebril, Amira Abdelnebi, Zoubir Dahmani, Shawkat Alkhazaleh, Nidal Anakira
{"title":"A New Fractional Representation of the Higher Order Taylor Scheme","authors":"Iqbal M. Batiha, Iqbal H. Jebril, Amira Abdelnebi, Zoubir Dahmani, Shawkat Alkhazaleh, Nidal Anakira","doi":"10.1155/2024/2849717","DOIUrl":"https://doi.org/10.1155/2024/2849717","url":null,"abstract":"<p>In this work, we suggest a new numerical scheme called the fractional higher order Taylor method (FHOTM) to solve fractional differential equations (FDEs). Using the generalized Taylor’s theorem is the fundamental concept of this approach. Then, the local truncation error generated by the suggested FHOTM is estimated by proving suitable theoretical results. At last, several numerical applications are given to demonstrate the applicability of the suggested approach in relation to their exact solutions.</p>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"2024 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/2849717","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141096282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Redefined Quintic B-Spline Collocation Method to Solve the Time-Fractional Whitham-Broer-Kaup Equations","authors":"Adel R. Hadhoud, Abdulqawi A. M. Rageh","doi":"10.1155/2024/7326616","DOIUrl":"https://doi.org/10.1155/2024/7326616","url":null,"abstract":"<p>This article proposes a collocation approach based on a redefined quintic B-spline basis for solving the time-fractional Whitham-Broer-Kaup equations. The presented method involves discretizing the time-fractional derivatives using an <i>L</i><sub>1</sub>-approximation scheme and then approximating the spatial derivatives using the redefined quintic B-spline basis. The von Neumann technique has been used to demonstrate that the proposed method is unconditionally stable. The error estimates are discussed and show that the proposed method is third-order convergent. The results demonstrate the potential of the proposed method as a reliable tool for solving fractional differential equations.</p>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"2024 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/7326616","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141096399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Mathematical Model for Transmission of Taeniasis and Neurocysticercosis","authors":"Gideon Eustace Rwabona, Verdiana Grace Masanja, Sayoki Mfinanga, Abdoelnaser Degoot, Silas Mirau","doi":"10.1155/2024/2550598","DOIUrl":"10.1155/2024/2550598","url":null,"abstract":"<p>In this study, we present a mathematical model for the codynamics of taeniasis and neurocysticercosis and rigorously analyze it. To understand the underlying dynamics of the proposed model, basic system properties such as the positivity and boundedness of solutions are investigated through the completing differential process. The basic reproduction number was calculated using the next-generation matrix method, and the analysis showed that when <span></span><math></math>, the disease in the community eventually dies out, and when <span></span><math></math>, the diseases persist. Local stability of the equilibria was analyzed using the Jacobian matrix, and Lyapunov function techniques were used to determine the global analysis, which showed that the endemic equilibrium point was globally stable when <span></span><math></math>. On the other hand, the disease-free equilibrium was determined to be globally stable when <span></span><math></math>. To identify the most influential parameters of the proposed model, partial correlation coefficient techniques were used. The numerical results depict that the model aligns well with the transmission dynamics, which goes through two populations: humans and pigs, whereby the model system stabilizes after some time, showing the validity of the proposed model. Furthermore, the simulations of the proposed model revealed that the shedding habit of infected humans with taeniasis and the bad cooking habit or eating of raw or undercooked pork products have a higher impact on the spread of neurocysticercosis and taeniasis in the community. Hence, this study proposes that in order to control taeniasis and neurocysticercosis, effective disease control measures should primarily prioritize hygienic behaviour and proper cooking of pork meat to the required temperature.</p>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"2024 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/2550598","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140252727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Salifu Nanga, Shei Baba Sayibu, Irene Dekomwine Angbing, Mubarika Alhassan, Abdul-Majeed Benson, Abdul Ghaniyyu Abubakari, Suleman Nasiru
{"title":"Secant Kumaraswamy Family of Distributions: Properties, Regression Model, and Applications","authors":"Salifu Nanga, Shei Baba Sayibu, Irene Dekomwine Angbing, Mubarika Alhassan, Abdul-Majeed Benson, Abdul Ghaniyyu Abubakari, Suleman Nasiru","doi":"10.1155/2024/8925329","DOIUrl":"10.1155/2024/8925329","url":null,"abstract":"<p>In this study, Secant Kumaraswamy family of distributions is proposed and studied. This is motivated by the fact that no one distribution can model all types of data from different fields. Therefore, there is the need to develop distributions with desirable properties and flexible enough for modelling data exhibiting different characteristics. Some properties of the new family of distributions, including the quantile function, moments, moment generating function, and mean residual life function, are derived. Five special cases of the family of distributions are presented, and their flexibility is shown by the varying degrees of skewness and kurtosis and nonmonotonic hazard rates. The maximum likelihood estimation method is used to obtain estimators of the family of distributions. Two location-scale regression models are developed for the Secant Kumaraswamy Weibull distribution, which is a special case of the family of distributions. Six different real datasets are used to demonstrate the usefulness of the family of distributions and the regression models. The results show that the family of distributions can be used to model real datasets.</p>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"2024 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/8925329","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139614665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
El Mehdi Bellfkih, Said Nouh, Imrane Chems Eddine Idrissi, Khalid Louartiti, Jamal Mouline
{"title":"Genetic Algorithm-Based Method for Discovering Involutory MDS Matrices","authors":"El Mehdi Bellfkih, Said Nouh, Imrane Chems Eddine Idrissi, Khalid Louartiti, Jamal Mouline","doi":"10.1155/2023/5951901","DOIUrl":"https://doi.org/10.1155/2023/5951901","url":null,"abstract":"<div>\u0000 <p>In this paper, we present an innovative approach for the discovery of involutory maximum distance separable (MDS) matrices over finite fields <span></span><math></math>, derived from MDS self-dual codes, by employing a technique based on genetic algorithms. The significance of involutory MDS matrices lies in their unique properties, making them valuable in various applications, particularly in coding theory and cryptography. We propose a genetic algorithm-based method that efficiently searches for involutory MDS matrices, ensuring their self-duality and maximization of distances between code words. By leveraging the genetic algorithm’s ability to evolve solutions over generations, our approach automates the process of identifying optimal involutory MDS matrices. Through comprehensive experiments, we demonstrate the effectiveness of our method and also unveil essential insights into automorphism groups within MDS self-dual codes. These findings hold promise for practical applications and extend the horizons of knowledge in both coding theory and cryptographic systems.</p>\u0000 </div>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"2023 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2023/5951901","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143253816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Employing a Modified Sumudu with a Modified Iteration Method to Solve the System of Nonlinear Partial Differential Equations","authors":"Junaid Idrees Mustafa","doi":"10.1155/2023/6649037","DOIUrl":"10.1155/2023/6649037","url":null,"abstract":"<div>\u0000 <p>The Sumudu transform is presented in this paper in a modified form which is aimed at improving its performance and employing it along with a modified iteration method in order to determine the solution to a system of nonlinear partial differential equations. This includes a theoretical analysis of the associated modified Sumudu transform. It also includes an explanation of the mathematical method for utilizing the transform in conjunction with the modified iteration technique. The iteration method is employed to determine the nonlinear terms of the equations. The research is valuable in the sense that it allows approximate and exact solution configurations to be determined by combining the modified Sumudu transform with a modified iteration method. As another benefit, the modified Sumudu transform can be developed and enhanced to be applicable to a wide range of equations, making it an effective solution tool. By combining techniques, a final advantage is that the solutions can be derived quickly and easily as a result of the combined approach. Finally, an old transformation which has been modified from the Sumudu transform is combined with the modified iteration method to examine its capability of yielding convergent solutions by incorporating the modified iteration method into it.</p>\u0000 </div>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"2023 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2023/6649037","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135093349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Fitted Numerical Approach for Singularly Perturbed Two-Parameter Parabolic Problem with Time Delay","authors":"Imiru Takele Daba, Wondwosen Gebeyaw Melesse, Guta Demisu Kebede","doi":"10.1155/2023/6496354","DOIUrl":"10.1155/2023/6496354","url":null,"abstract":"<div>\u0000 <p>This paper is aimed at constructing and analyzing a fitted approach for singularly perturbed time delay parabolic problems with two small parameters. The proposed computational scheme comprises the implicit Euler and especially finite difference method for the time and space variable discretization, respectively, on uniform step size. The stability and convergence analysis of the method is provided and is first-order parameter uniform convergent. Further, the numerical results depict that the present method is more convergent than some methods available in the literature.</p>\u0000 </div>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"2023 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2023/6496354","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134973783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Álvaro Fernández Casaní, Carlos García Montoro, Santiago González de la Hoz, José Salt, Javier Sánchez, Miguel Villaplana Pérez
{"title":"Big Data Analytics for the ATLAS EventIndex Project with Apache Spark","authors":"Álvaro Fernández Casaní, Carlos García Montoro, Santiago González de la Hoz, José Salt, Javier Sánchez, Miguel Villaplana Pérez","doi":"10.1155/2023/6900908","DOIUrl":"10.1155/2023/6900908","url":null,"abstract":"<div>\u0000 <p>The ATLAS EventIndex was designed to provide a global event catalogue and limited event-level metadata for ATLAS experiment of the Large Hadron Collider (LHC) and their analysis groups and users during Run 2 (2015-2018) and has been running in production since. The LHC Run 3, started in 2022, has seen increased data-taking and simulation production rates, with which the current infrastructure would still cope but may be stretched to its limits by the end of Run 3. A new core storage service is being developed in HBase/Phoenix, and there is work in progress to provide at least the same functionality as the current one for increased data ingestion and search rates and with increasing volumes of stored data. In addition, new tools are being developed for solving the needed access cases within the new storage. This paper describes a new tool using Spark and implemented in Scala for accessing the big data quantities of the EventIndex project stored in HBase/Phoenix. With this tool, we can offer data discovery capabilities at different granularities, providing Spark Dataframes that can be used or refined within the same framework. Data analytic cases of the EventIndex project are implemented, like the search for duplicates of events from the same or different datasets. An algorithm and implementation for the calculation of overlap matrices of events across different datasets are presented. Our approach can be used by other higher-level tools and users, to ease access to the data in a performant and standard way using Spark abstractions. The provided tools decouple data access from the actual data schema, which makes it convenient to hide complexity and possible changes on the backed storage.</p>\u0000 </div>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"2023 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2023/6900908","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135536157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}