高阶泰勒方案的新分数表示法

IF 0.9 Q3 MATHEMATICS, APPLIED
Iqbal M. Batiha, Iqbal H. Jebril, Amira Abdelnebi, Zoubir Dahmani, Shawkat Alkhazaleh, Nidal Anakira
{"title":"高阶泰勒方案的新分数表示法","authors":"Iqbal M. Batiha,&nbsp;Iqbal H. Jebril,&nbsp;Amira Abdelnebi,&nbsp;Zoubir Dahmani,&nbsp;Shawkat Alkhazaleh,&nbsp;Nidal Anakira","doi":"10.1155/2024/2849717","DOIUrl":null,"url":null,"abstract":"<p>In this work, we suggest a new numerical scheme called the fractional higher order Taylor method (FHOTM) to solve fractional differential equations (FDEs). Using the generalized Taylor’s theorem is the fundamental concept of this approach. Then, the local truncation error generated by the suggested FHOTM is estimated by proving suitable theoretical results. At last, several numerical applications are given to demonstrate the applicability of the suggested approach in relation to their exact solutions.</p>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"2024 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/2849717","citationCount":"0","resultStr":"{\"title\":\"A New Fractional Representation of the Higher Order Taylor Scheme\",\"authors\":\"Iqbal M. Batiha,&nbsp;Iqbal H. Jebril,&nbsp;Amira Abdelnebi,&nbsp;Zoubir Dahmani,&nbsp;Shawkat Alkhazaleh,&nbsp;Nidal Anakira\",\"doi\":\"10.1155/2024/2849717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work, we suggest a new numerical scheme called the fractional higher order Taylor method (FHOTM) to solve fractional differential equations (FDEs). Using the generalized Taylor’s theorem is the fundamental concept of this approach. Then, the local truncation error generated by the suggested FHOTM is estimated by proving suitable theoretical results. At last, several numerical applications are given to demonstrate the applicability of the suggested approach in relation to their exact solutions.</p>\",\"PeriodicalId\":100308,\"journal\":{\"name\":\"Computational and Mathematical Methods\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/2849717\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Mathematical Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/2849717\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Methods","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/2849717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们提出了一种新的数值方案,称为分数高阶泰勒法(FHOTM),用于求解分数微分方程(FDE)。使用广义泰勒定理是这一方法的基本概念。然后,通过证明合适的理论结果,估算了建议的 FHOTM 所产生的局部截断误差。最后,给出了几个数值应用,以证明所建议的方法与精确解的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Fractional Representation of the Higher Order Taylor Scheme

In this work, we suggest a new numerical scheme called the fractional higher order Taylor method (FHOTM) to solve fractional differential equations (FDEs). Using the generalized Taylor’s theorem is the fundamental concept of this approach. Then, the local truncation error generated by the suggested FHOTM is estimated by proving suitable theoretical results. At last, several numerical applications are given to demonstrate the applicability of the suggested approach in relation to their exact solutions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信