Genetic Algorithm-Based Method for Discovering Involutory MDS Matrices

IF 0.9 Q3 MATHEMATICS, APPLIED
El Mehdi Bellfkih, Said Nouh, Imrane Chems Eddine Idrissi, Khalid Louartiti, Jamal Mouline
{"title":"Genetic Algorithm-Based Method for Discovering Involutory MDS Matrices","authors":"El Mehdi Bellfkih,&nbsp;Said Nouh,&nbsp;Imrane Chems Eddine Idrissi,&nbsp;Khalid Louartiti,&nbsp;Jamal Mouline","doi":"10.1155/2023/5951901","DOIUrl":null,"url":null,"abstract":"<div>\n <p>In this paper, we present an innovative approach for the discovery of involutory maximum distance separable (MDS) matrices over finite fields <span></span><math></math>, derived from MDS self-dual codes, by employing a technique based on genetic algorithms. The significance of involutory MDS matrices lies in their unique properties, making them valuable in various applications, particularly in coding theory and cryptography. We propose a genetic algorithm-based method that efficiently searches for involutory MDS matrices, ensuring their self-duality and maximization of distances between code words. By leveraging the genetic algorithm’s ability to evolve solutions over generations, our approach automates the process of identifying optimal involutory MDS matrices. Through comprehensive experiments, we demonstrate the effectiveness of our method and also unveil essential insights into automorphism groups within MDS self-dual codes. These findings hold promise for practical applications and extend the horizons of knowledge in both coding theory and cryptographic systems.</p>\n </div>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"2023 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2023/5951901","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Methods","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2023/5951901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present an innovative approach for the discovery of involutory maximum distance separable (MDS) matrices over finite fields , derived from MDS self-dual codes, by employing a technique based on genetic algorithms. The significance of involutory MDS matrices lies in their unique properties, making them valuable in various applications, particularly in coding theory and cryptography. We propose a genetic algorithm-based method that efficiently searches for involutory MDS matrices, ensuring their self-duality and maximization of distances between code words. By leveraging the genetic algorithm’s ability to evolve solutions over generations, our approach automates the process of identifying optimal involutory MDS matrices. Through comprehensive experiments, we demonstrate the effectiveness of our method and also unveil essential insights into automorphism groups within MDS self-dual codes. These findings hold promise for practical applications and extend the horizons of knowledge in both coding theory and cryptographic systems.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信