基于遗传算法的对合MDS矩阵发现方法

IF 0.9 Q3 MATHEMATICS, APPLIED
El Mehdi Bellfkih, Said Nouh, Imrane Chems Eddine Idrissi, Khalid Louartiti, Jamal Mouline
{"title":"基于遗传算法的对合MDS矩阵发现方法","authors":"El Mehdi Bellfkih,&nbsp;Said Nouh,&nbsp;Imrane Chems Eddine Idrissi,&nbsp;Khalid Louartiti,&nbsp;Jamal Mouline","doi":"10.1155/2023/5951901","DOIUrl":null,"url":null,"abstract":"<div>\n <p>In this paper, we present an innovative approach for the discovery of involutory maximum distance separable (MDS) matrices over finite fields <span></span><math></math>, derived from MDS self-dual codes, by employing a technique based on genetic algorithms. The significance of involutory MDS matrices lies in their unique properties, making them valuable in various applications, particularly in coding theory and cryptography. We propose a genetic algorithm-based method that efficiently searches for involutory MDS matrices, ensuring their self-duality and maximization of distances between code words. By leveraging the genetic algorithm’s ability to evolve solutions over generations, our approach automates the process of identifying optimal involutory MDS matrices. Through comprehensive experiments, we demonstrate the effectiveness of our method and also unveil essential insights into automorphism groups within MDS self-dual codes. These findings hold promise for practical applications and extend the horizons of knowledge in both coding theory and cryptographic systems.</p>\n </div>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"2023 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2023/5951901","citationCount":"0","resultStr":"{\"title\":\"Genetic Algorithm-Based Method for Discovering Involutory MDS Matrices\",\"authors\":\"El Mehdi Bellfkih,&nbsp;Said Nouh,&nbsp;Imrane Chems Eddine Idrissi,&nbsp;Khalid Louartiti,&nbsp;Jamal Mouline\",\"doi\":\"10.1155/2023/5951901\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>In this paper, we present an innovative approach for the discovery of involutory maximum distance separable (MDS) matrices over finite fields <span></span><math></math>, derived from MDS self-dual codes, by employing a technique based on genetic algorithms. The significance of involutory MDS matrices lies in their unique properties, making them valuable in various applications, particularly in coding theory and cryptography. We propose a genetic algorithm-based method that efficiently searches for involutory MDS matrices, ensuring their self-duality and maximization of distances between code words. By leveraging the genetic algorithm’s ability to evolve solutions over generations, our approach automates the process of identifying optimal involutory MDS matrices. Through comprehensive experiments, we demonstrate the effectiveness of our method and also unveil essential insights into automorphism groups within MDS self-dual codes. These findings hold promise for practical applications and extend the horizons of knowledge in both coding theory and cryptographic systems.</p>\\n </div>\",\"PeriodicalId\":100308,\"journal\":{\"name\":\"Computational and Mathematical Methods\",\"volume\":\"2023 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2023/5951901\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Mathematical Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2023/5951901\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Methods","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2023/5951901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种创新的方法来发现有限域上的对合最大距离可分离(MDS)矩阵,该矩阵由MDS自对偶编码导出,采用基于遗传算法的技术。对合MDS矩阵的重要意义在于其独特的性质,使其具有广泛的应用价值,特别是在编码理论和密码学方面。我们提出了一种基于遗传算法的方法,有效地搜索对合MDS矩阵,保证它们的自对偶性和码字之间距离的最大化。通过利用遗传算法在几代人之间进化解决方案的能力,我们的方法自动化了识别最佳对合MDS矩阵的过程。通过全面的实验,我们证明了我们的方法的有效性,并揭示了MDS自对偶编码中自同构群的基本见解。这些发现为实际应用带来了希望,并扩展了编码理论和密码系统的知识视野。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Genetic Algorithm-Based Method for Discovering Involutory MDS Matrices

Genetic Algorithm-Based Method for Discovering Involutory MDS Matrices

In this paper, we present an innovative approach for the discovery of involutory maximum distance separable (MDS) matrices over finite fields , derived from MDS self-dual codes, by employing a technique based on genetic algorithms. The significance of involutory MDS matrices lies in their unique properties, making them valuable in various applications, particularly in coding theory and cryptography. We propose a genetic algorithm-based method that efficiently searches for involutory MDS matrices, ensuring their self-duality and maximization of distances between code words. By leveraging the genetic algorithm’s ability to evolve solutions over generations, our approach automates the process of identifying optimal involutory MDS matrices. Through comprehensive experiments, we demonstrate the effectiveness of our method and also unveil essential insights into automorphism groups within MDS self-dual codes. These findings hold promise for practical applications and extend the horizons of knowledge in both coding theory and cryptographic systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信