Redefined Quintic B-Spline Collocation Method to Solve the Time-Fractional Whitham-Broer-Kaup Equations

IF 0.9 Q3 MATHEMATICS, APPLIED
Adel R. Hadhoud, Abdulqawi A. M. Rageh
{"title":"Redefined Quintic B-Spline Collocation Method to Solve the Time-Fractional Whitham-Broer-Kaup Equations","authors":"Adel R. Hadhoud,&nbsp;Abdulqawi A. M. Rageh","doi":"10.1155/2024/7326616","DOIUrl":null,"url":null,"abstract":"<p>This article proposes a collocation approach based on a redefined quintic B-spline basis for solving the time-fractional Whitham-Broer-Kaup equations. The presented method involves discretizing the time-fractional derivatives using an <i>L</i><sub>1</sub>-approximation scheme and then approximating the spatial derivatives using the redefined quintic B-spline basis. The von Neumann technique has been used to demonstrate that the proposed method is unconditionally stable. The error estimates are discussed and show that the proposed method is third-order convergent. The results demonstrate the potential of the proposed method as a reliable tool for solving fractional differential equations.</p>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"2024 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/7326616","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Methods","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/7326616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This article proposes a collocation approach based on a redefined quintic B-spline basis for solving the time-fractional Whitham-Broer-Kaup equations. The presented method involves discretizing the time-fractional derivatives using an L1-approximation scheme and then approximating the spatial derivatives using the redefined quintic B-spline basis. The von Neumann technique has been used to demonstrate that the proposed method is unconditionally stable. The error estimates are discussed and show that the proposed method is third-order convergent. The results demonstrate the potential of the proposed method as a reliable tool for solving fractional differential equations.

用重新定义的五次 B-样条拼合法求解时间分数惠瑟姆-布罗尔-考普方程
本文提出了一种基于重新定义的五次 B 样条基的配位方法,用于求解时间分式 Whitham-Broer-Kaup 方程。所提出的方法包括使用 L1 近似方案对时间分量导数进行离散化,然后使用重新定义的五次 B 样条基对空间导数进行近似。von Neumann 技术被用来证明所提出的方法是无条件稳定的。对误差估计进行了讨论,结果表明所提出的方法具有三阶收敛性。结果表明,所提出的方法有潜力成为求解分数微分方程的可靠工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信