{"title":"Redefined Quintic B-Spline Collocation Method to Solve the Time-Fractional Whitham-Broer-Kaup Equations","authors":"Adel R. Hadhoud, Abdulqawi A. M. Rageh","doi":"10.1155/2024/7326616","DOIUrl":null,"url":null,"abstract":"<p>This article proposes a collocation approach based on a redefined quintic B-spline basis for solving the time-fractional Whitham-Broer-Kaup equations. The presented method involves discretizing the time-fractional derivatives using an <i>L</i><sub>1</sub>-approximation scheme and then approximating the spatial derivatives using the redefined quintic B-spline basis. The von Neumann technique has been used to demonstrate that the proposed method is unconditionally stable. The error estimates are discussed and show that the proposed method is third-order convergent. The results demonstrate the potential of the proposed method as a reliable tool for solving fractional differential equations.</p>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"2024 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/7326616","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Methods","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/7326616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This article proposes a collocation approach based on a redefined quintic B-spline basis for solving the time-fractional Whitham-Broer-Kaup equations. The presented method involves discretizing the time-fractional derivatives using an L1-approximation scheme and then approximating the spatial derivatives using the redefined quintic B-spline basis. The von Neumann technique has been used to demonstrate that the proposed method is unconditionally stable. The error estimates are discussed and show that the proposed method is third-order convergent. The results demonstrate the potential of the proposed method as a reliable tool for solving fractional differential equations.