CES Transactions on Electrical Machines and Systems最新文献

筛选
英文 中文
Message from Editors 编辑致辞
CES Transactions on Electrical Machines and Systems Pub Date : 2024-06-01 DOI: 10.30941/CESTEMS.2024.10051
{"title":"Message from Editors","authors":"","doi":"10.30941/CESTEMS.2024.10051","DOIUrl":"https://doi.org/10.30941/CESTEMS.2024.10051","url":null,"abstract":"As with the continuous advancement of the low-carbon energy development, the wind power generation experiences fast growth with 441.3 GW installed capacity by Dec. 2023. The high penetration of renewable energy, together with high penetration of power electronic equipment (namely, “double high”), has been altering the steady-state and transient characteristics of wind power generation in a profound way, resulting in the different risk of instability. These stability issues will seriously affect the consumption of renewable energy and threaten the safe supply of electricity. Along with rapid deployment of wind power generation, together with the solar photovoltaic generation, it is expected to be over 1200 GW by 2030.","PeriodicalId":100229,"journal":{"name":"CES Transactions on Electrical Machines and Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10579826","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141495327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transient Damping of Virtual Synchronous Generator for Enhancing Synchronization Stability During Voltage Dips 虚拟同步发电机的瞬态阻尼以增强电压骤降期间的同步稳定性
CES Transactions on Electrical Machines and Systems Pub Date : 2024-06-01 DOI: 10.30941/CESTEMS.2024.00021
Shitao Sun;Yu Lei;Guowen Hao;Yi Lu;Jindong Liu;Zhaoxin Song;Jie Zhang
{"title":"Transient Damping of Virtual Synchronous Generator for Enhancing Synchronization Stability During Voltage Dips","authors":"Shitao Sun;Yu Lei;Guowen Hao;Yi Lu;Jindong Liu;Zhaoxin Song;Jie Zhang","doi":"10.30941/CESTEMS.2024.00021","DOIUrl":"https://doi.org/10.30941/CESTEMS.2024.00021","url":null,"abstract":"Virtual synchronous generators (VSGs) are widely introduced to the renewable power generation, the variable-speed pumped storage units, and so on, as a promising grid-forming solution. It is noted that VSGs can provide virtual inertia for frequency support, but the larger inertia would worsen the synchronization stability, referring to keeping synchronization with the grid during voltage dips. Thus, this paper presents a transient damping method of VSGs for enhancing the synchronization stability during voltage dips. It is revealed that the loss of synchronization (LOS) of VSGs always accompanies with the positive frequency deviation and the damping is the key factor to remove LOS when the equilibrium point exists. In order to enhance synchronization stability during voltage dips, the transient damping is proposed, which is generated by the frequency deviation in active power loop. Additionally, the proposed method can realize seamless switching between normal state and grid fault. Moreover, detailed control design for transient damping gain is given to ensure the synchronization stability under different inertia requirements during voltage dips. Finally, the experimental results are presented to validate the analysis and the effectiveness of the improved transient damping method.","PeriodicalId":100229,"journal":{"name":"CES Transactions on Electrical Machines and Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10579824","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141495287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design Optimization of a Self-Circulated Hydrogen Cooling System for a PM Wind Generator Based on Taguchi Method 基于田口方法的永磁风力发电机自循环氢气冷却系统优化设计
CES Transactions on Electrical Machines and Systems Pub Date : 2024-06-01 DOI: 10.30941/CESTEMS.2024.00024
Gaojia Zhu;Yunhao Li;Longnv Li
{"title":"Design Optimization of a Self-Circulated Hydrogen Cooling System for a PM Wind Generator Based on Taguchi Method","authors":"Gaojia Zhu;Yunhao Li;Longnv Li","doi":"10.30941/CESTEMS.2024.00024","DOIUrl":"https://doi.org/10.30941/CESTEMS.2024.00024","url":null,"abstract":"With the continuous improvement of permanent magnet (PM) wind generators' capacity and power density, the design of reasonable and efficient cooling structures has become a focus. This paper proposes a fully enclosed self-circulating hydrogen cooling structure for a originally forced-air-cooled direct-drive PM wind generator. The proposed hydrogen cooling system uses the rotor panel supports that hold the rotor core as the radial blades, and the hydrogen flow is driven by the rotating plates to flow through the axial and radial vents to realize the efficient cooling of the generator. According to the structural parameters of the cooling system, the Taguchi method is used to decouple the structural variables. The influence of the size of each cooling structure on the heat dissipation characteristic is analyzed, and the appropriate cooling structure scheme is determined.","PeriodicalId":100229,"journal":{"name":"CES Transactions on Electrical Machines and Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10579827","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141495325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analytical Model and Topology Optimization of Doubly-Fed Induction Generator 双馈感应发电机的分析模型和拓扑优化
CES Transactions on Electrical Machines and Systems Pub Date : 2024-06-01 DOI: 10.30941/CESTEMS.2024.00022
Lu Sun;Haoyu Kang;Jin Wang;Zequan Li;Jianjun Liu;Yiming Ma;Libing Zhou
{"title":"Analytical Model and Topology Optimization of Doubly-Fed Induction Generator","authors":"Lu Sun;Haoyu Kang;Jin Wang;Zequan Li;Jianjun Liu;Yiming Ma;Libing Zhou","doi":"10.30941/CESTEMS.2024.00022","DOIUrl":"https://doi.org/10.30941/CESTEMS.2024.00022","url":null,"abstract":"As the core component of energy conversion for large wind turbines, the output performance of doubly-fed induction generators (DFIGs) plays a decisive role in the power quality of wind turbines. To realize the fast and accurate design optimization of DFIGs, this paper proposes a novel hybrid-driven surrogate-assisted optimization method. It firstly establishes an accurate subdomain model of DFIGs to analytically predict performance indexes. Furthermore, taking the inexpensive analytical dataset produced by the subdomain model as the source domain and the expensive finite element analysis dataset as the target domain, a high-precision surrogate model is trained in a transfer learning way and used for the subsequent multi-objective optimization process. Based on this model, taking the total harmonic distortion of electromotive force, cogging torque, and iron loss as objectives, and the slot and inner/outer diameters as parameters for optimizing the topology, achieve a rapid and accurate electromagnetic design for DFIGs. Finally, experiments are carried out on a 3MW DFIG to validate the effectiveness of the proposed method.","PeriodicalId":100229,"journal":{"name":"CES Transactions on Electrical Machines and Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10579828","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141494912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Review of the Analysis and Suppression for High-Frequency Oscillations of the Grid-Connected Wind Power Generation System 并网风力发电系统高频振荡分析与抑制综述
CES Transactions on Electrical Machines and Systems Pub Date : 2024-06-01 DOI: 10.30941/CESTEMS.2024.00025
Bo Pang;Qi Si;Pan Jiang;Kai Liao;Xiaojuan Zhu;Jianwei Yang;Zhengyou He
{"title":"Review of the Analysis and Suppression for High-Frequency Oscillations of the Grid-Connected Wind Power Generation System","authors":"Bo Pang;Qi Si;Pan Jiang;Kai Liao;Xiaojuan Zhu;Jianwei Yang;Zhengyou He","doi":"10.30941/CESTEMS.2024.00025","DOIUrl":"https://doi.org/10.30941/CESTEMS.2024.00025","url":null,"abstract":"High-frequency oscillation (HFO) of grid-connected wind power generation systems (WPGS) is one of the most critical issues in recent years that threaten the safe access of WPGS to the grid. Ensuring the WPGS can damp HFO is becoming more and more vital for the development of wind power. The HFO phenomenon of wind turbines under different scenarios usually has different mechanisms. Hence, engineers need to acquire the working mechanisms of the different HFO damping technologies and select the appropriate one to ensure the effective implementation of oscillation damping in practical engineering. This paper introduces the general assumptions of WPGS when analyzing HFO, systematically summarizes the reasons for the occurrence of HFO in different scenarios, deeply analyses the key points and difficulties of HFO damping under different scenarios, and then compares the technical performances of various types of HFO suppression methods to provide adequate references for engineers in the application of technology. Finally, this paper discusses possible future research difficulties in the problem of HFO, as well as the possible future trends in the demand for HFO damping.","PeriodicalId":100229,"journal":{"name":"CES Transactions on Electrical Machines and Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10579809","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141495302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Loss-Model-Based Efficiency Optimization Control Method for Induction Traction System of High-Speed Train Under Emergency Self-Propelled Mode 基于损耗模型的紧急自推进模式下高速列车感应牵引系统效率优化控制方法
CES Transactions on Electrical Machines and Systems Pub Date : 2024-03-31 DOI: 10.30941/CESTEMS.2024.00017
Yutong Zhu;Yaohua Li
{"title":"A Loss-Model-Based Efficiency Optimization Control Method for Induction Traction System of High-Speed Train Under Emergency Self-Propelled Mode","authors":"Yutong Zhu;Yaohua Li","doi":"10.30941/CESTEMS.2024.00017","DOIUrl":"https://doi.org/10.30941/CESTEMS.2024.00017","url":null,"abstract":"Increasing attention has been paid to the efficiency improvement of the induction traction system of high-speed trains due to the high demand for energy saving. In emergency self-propelled mode, however, the dc-link voltage and the traction power of the motor are significantly reduced, resulting in decreased traction efficiency due to the low load and low speed operations. Aiming to tackle this problem, a novel efficiency improved control method is introduced to the emergency mode of high-speed train traction system in this paper. In the proposed method, a total loss model of induction motor considering the behaviors of both iron and copper loss is established. An improved iterative algorithm with decreased computational burden is then introduced, resulting in a fast solving of the optimal flux reference for loss minimization at each control period. In addition, considering the parameter variation problem due to the low load and low speed operations, a parameter estimation method is integrated to improve the controller's robustness. The effectiveness of the proposed method on efficiency improvement at low voltage and low load conditions is demonstrated by simulated and experimental results.","PeriodicalId":100229,"journal":{"name":"CES Transactions on Electrical Machines and Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10545326","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141495326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comments and Corrections 评论与更正
CES Transactions on Electrical Machines and Systems Pub Date : 2024-03-30 DOI: 10.30941/CESTEMS.2024.00801
{"title":"Comments and Corrections","authors":"","doi":"10.30941/CESTEMS.2024.00801","DOIUrl":"https://doi.org/10.30941/CESTEMS.2024.00801","url":null,"abstract":"","PeriodicalId":100229,"journal":{"name":"CES Transactions on Electrical Machines and Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10541945","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141494920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation on the Novel High-performance Copper/Graphene Composite Conductor for High Power Density Motor 用于高功率密度电机的新型高性能铜/石墨烯复合导体研究
CES Transactions on Electrical Machines and Systems Pub Date : 2024-03-12 DOI: 10.30941/CESTEMS.2024.00009
Jiaxiao Wang;Tingting Zuo;Jiangli Xue;Yadong Ru;Yue Wu;Zhuang Xu;Yongsheng Liu;Zhaoshun Gao;Puqi Ning;Tao Fan;Xuhui Wen;Li Han;Liye Xiao
{"title":"Investigation on the Novel High-performance Copper/Graphene Composite Conductor for High Power Density Motor","authors":"Jiaxiao Wang;Tingting Zuo;Jiangli Xue;Yadong Ru;Yue Wu;Zhuang Xu;Yongsheng Liu;Zhaoshun Gao;Puqi Ning;Tao Fan;Xuhui Wen;Li Han;Liye Xiao","doi":"10.30941/CESTEMS.2024.00009","DOIUrl":"https://doi.org/10.30941/CESTEMS.2024.00009","url":null,"abstract":"High-performance Cu/Graphene composite wire synergistically strengthened by nano Cr\u0000<inf>3</inf>\u0000C\u0000<inf>2</inf>\u0000 phase was directly synthesized via hot press sintering followed by severe cold plastic deformation, using liquid paraffin and CuCr alloy powder as the raw materials. Since graphene is in situ formed under the catalysis of copper powder during the sintering process, the problem that graphene is easy to agglomerate and difficult to disperse uniformly in the copper matrix has been solved. The nano Cr\u0000<inf>3</inf>\u0000C\u0000<inf>2</inf>\u0000-particles nailed at the interface favor to improve the interface bonding. The Cu/Graphene composite possesses high electrical conductivity, hardness, and plasticity. The composite wire exhibits high electrical conductivity of 96.93% IACS, great tensile strength of 488 MPa, and excellent resistance to softening. Even after annealing at 400°C for 1 h, the tensile strength can still reach 268 MPa with a conductivity of about 99.14% IACS. The wire's temperature coefficient of resistance (TCR) is largely reduced to 0.0035/°C due to the complex structure, which leads the wire to present low resistivity at higher temperatures. Such Cu/Graphene composite wire with excellent comprehensive performance has a good application prospect in high-power density motors.","PeriodicalId":100229,"journal":{"name":"CES Transactions on Electrical Machines and Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10471246","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140342668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of End-Ring Configuration in Shaping IE4 Induction Motor Performance 端环配置在影响 IE4 感应电机性能方面的作用
CES Transactions on Electrical Machines and Systems Pub Date : 2024-03-09 DOI: 10.30941/CESTEMS.2024.00014
Tayfun Gundogdu;Sinan Suli
{"title":"Role of End-Ring Configuration in Shaping IE4 Induction Motor Performance","authors":"Tayfun Gundogdu;Sinan Suli","doi":"10.30941/CESTEMS.2024.00014","DOIUrl":"https://doi.org/10.30941/CESTEMS.2024.00014","url":null,"abstract":"The performance characteristics, particularly the starting performance of direct line-fed induction motors, which are mainly influenced by the design of the rotor, are crucial considerations for end-users. It is quite a challenging issue for motor manufacturers to enhance the starting performance of existing mass-produced motors with minimal modifications and expenses. In this paper, a simple and cost-effective method to improve the starting performance of a commercial squirrel-cage induction motor (SCIM) is proposed. The influence of geometric parameters of the end-ring on the performance characteristics, including starting (locked rotor) torque, pull-up and break down torque, starting current, rotor electric parameters, current density, power losses, and efficiency have been comprehensively investigated. It has been revealed that among the other end-ring design parameters, the ring thickness has a significant effect on the performance characteristics. An optimal end-ring thickness is determined, and its performance characteristics have been compared to those of its initial counterpart. Numeric and parametric analyses have been conducted using a 2D time-stepping finite element method (FEM). The FEM results were validated using experimental measurements obtained from an 11 kW SCIM prototype.","PeriodicalId":100229,"journal":{"name":"CES Transactions on Electrical Machines and Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10528229","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142368480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Laboratory Implementation of Direct Torque Controller based Speed Loop Pseudo Derivative Feedforward Controller for PMSM Drive 基于 PMSM 驱动器速度环伪偏差前馈控制器的直接转矩控制器的实验室实现
CES Transactions on Electrical Machines and Systems Pub Date : 2024-03-01 DOI: 10.30941/CESTEMS.2024.00004
Prabhakaran Koothu Kesavan;Umashankar Subramaniam;Dhafer J. Almakhles
{"title":"Laboratory Implementation of Direct Torque Controller based Speed Loop Pseudo Derivative Feedforward Controller for PMSM Drive","authors":"Prabhakaran Koothu Kesavan;Umashankar Subramaniam;Dhafer J. Almakhles","doi":"10.30941/CESTEMS.2024.00004","DOIUrl":"https://doi.org/10.30941/CESTEMS.2024.00004","url":null,"abstract":"This paper, evaluate the effectiveness of a proposed speed loop pseudo derivative feedforward (PDFF) controller-based direct torque controller (DTC) for a PMSM drive against the performance of existing PI speed controller-based DTC and hysteresis current controller (HCC). The proposed PDFF-based speed regulator effectively reduces oscillation and overshoot associated with rotor angular speed, electromagnetic torque, and stator current. Two case studies, one using forward-to-reverse motoring operation and the other involving reverse-to-forward braking operation, has been validated to show the effectiveness of the proposed control strategy. The proposed controller's superior performance is demonstrated through experimental verification utilizing an FPGA controller for a 1.5 kW PMSM drive laboratory prototype.","PeriodicalId":100229,"journal":{"name":"CES Transactions on Electrical Machines and Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10488431","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140342729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信