Brain Organoid and Systems Neuroscience Journal最新文献

筛选
英文 中文
Trehalose, but not other sugars, protects HT22 cells against amyloid-beta toxicity 海藻糖(而非其他糖类)能保护 HT22 细胞免受淀粉样蛋白-β 的毒性侵害
Brain Organoid and Systems Neuroscience Journal Pub Date : 2025-04-18 DOI: 10.1016/j.bosn.2025.04.005
Yue Xu , Kartar Singh , Michael A. Beazely , Zoya Leonenko
{"title":"Trehalose, but not other sugars, protects HT22 cells against amyloid-beta toxicity","authors":"Yue Xu ,&nbsp;Kartar Singh ,&nbsp;Michael A. Beazely ,&nbsp;Zoya Leonenko","doi":"10.1016/j.bosn.2025.04.005","DOIUrl":"10.1016/j.bosn.2025.04.005","url":null,"abstract":"<div><div>Trehalose sugar is being explored as a health supplement in Alzheimer’s Disease due to its neuroprotective potential, which is hypothesized to be mainly due to its regulation of pathological amyloid-beta (Aβ) production and aggregation via metabolic pathways. However, the impact of trehalose on neuronal systems against amyloid toxicity is unclear. This work presents a study of the impact of trehalose at different concentrations on HT22 cell viability and explores whether trehalose can directly reduce cell death caused by exogenous Aβ1–42 oligomers. We used an MTT cell viability assay to evaluate the viability of HT22 cells exposure to exogenous Aβ1–42 oligomers alone or in combination with trehalose and several other sugars. Our results reveal that trehalose has a protective effect on the cell viability against Aβ1–42 oligomers, while other sugars, lactulose, sucrose, and fructose, provided no protection against amyloid toxicity.</div></div>","PeriodicalId":100198,"journal":{"name":"Brain Organoid and Systems Neuroscience Journal","volume":"3 ","pages":"Pages 69-72"},"PeriodicalIF":0.0,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143851521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aversive memory engrams in the hippocampus 海马体中的厌恶记忆印痕
Brain Organoid and Systems Neuroscience Journal Pub Date : 2025-04-18 DOI: 10.1016/j.bosn.2025.04.003
Julia Leschik
{"title":"Aversive memory engrams in the hippocampus","authors":"Julia Leschik","doi":"10.1016/j.bosn.2025.04.003","DOIUrl":"10.1016/j.bosn.2025.04.003","url":null,"abstract":"<div><div>Negative episodic memories exert important control of behavioral responses during a real or anticipated threatening situation. Under pathological states, however, this control can extend to non-threatening scenarios. For example, pathological states of aversive memory involve fear-overgeneralization in post-traumatic stress disorder (PTSD) or other anxiety disorders. Furthermore, negative bias in cognitive processing and memory formation is seen in depressed individuals displaying enhanced encoding and recall, less forgetting or repetition of negative memory (rumination) as well as impaired recall of positive memory. Beyond pathological conditions, researchers have long aimed to understand the basic biological entity of memory. This unit termed “engram” is the cellular and molecular component of enduring physiological changes in the brain, enabling learning and memory retrieval. Herein, the hippocampus is central in the formation of context-dependent episodic memories and therefore most often studied in animal experiments to elucidate complex memory traces. In addition, the hippocampus is critically involved in fear-circuits and stress-related dysfunction. This review summarizes current knowledge about memory engrams in hippocampal (sub)regions and their functional relevance regarding neuronal correlates and rodent behavior. A special focus is placed on the negative valence of a memory and the formation of engrams for aversive memories, specifically induced by fear or stress. Finally, limitations of current engram research and possible future directions to improve our understanding of negatively valued memory and its implications in neuropathological conditions will be discussed.</div></div>","PeriodicalId":100198,"journal":{"name":"Brain Organoid and Systems Neuroscience Journal","volume":"3 ","pages":"Pages 79-88"},"PeriodicalIF":0.0,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143874437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the implementation of single-cell omics and CRISPR screens for iPSC-models of Parkinson’s disease 单细胞组学和CRISPR筛选在帕金森病ipsc模型中的应用
Brain Organoid and Systems Neuroscience Journal Pub Date : 2025-04-11 DOI: 10.1016/j.bosn.2025.04.001
Victoria Lievens , Hugo J.R. Fernandes
{"title":"On the implementation of single-cell omics and CRISPR screens for iPSC-models of Parkinson’s disease","authors":"Victoria Lievens ,&nbsp;Hugo J.R. Fernandes","doi":"10.1016/j.bosn.2025.04.001","DOIUrl":"10.1016/j.bosn.2025.04.001","url":null,"abstract":"<div><div>Parkinson’s disease (PD) is currently the fastest growing neurological condition, with an urgent need for effective treatments to slow or stop disease progression. The advent of induced pluripotent stem cells (iPSC) models has significantly enhanced our understanding of PD by providing unprecedented access to disease-relevant cell types. These PD <em>in vitro</em> models have provided novels insights into mitochondrial dysfunction, lysosomal and autophagic dysregulation, protein aggregation, stress response, inflammation and metabolic perturbations. However, cellular heterogeneity and variability across iPSC lines are inherent limitations of these models which are often overlooked. Here we discuss ongoing efforts and opportunities to improve PD models by incorporating recent advancements in single-cell multi-omics analyses. We also highlight the lack of genetic CRISPR screens using iPSC-models of PD and discuss current limitations and prospects. We argue that implementing and combining these tools has the potential to unlock novel insights into the pathological mechanisms of PD that could lead to new therapeutic targets for this devastating disorder.</div></div>","PeriodicalId":100198,"journal":{"name":"Brain Organoid and Systems Neuroscience Journal","volume":"3 ","pages":"Pages 73-78"},"PeriodicalIF":0.0,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143868528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Studying the neural correlates of upper aerodigestive tract functions under natural conditions: A protocol using functional near-infrared spectroscopy, cervical acoustics, and accelerometry 研究自然条件下上消化道功能的神经相关性:使用功能性近红外光谱、颈椎声学和加速度计的方案
Brain Organoid and Systems Neuroscience Journal Pub Date : 2025-04-08 DOI: 10.1016/j.bosn.2025.04.002
Yohan Gallois , Jeanne Souche , Yann Lemaire , Lila Gravellier , Pascal Barone , Linda Nicolini , Jérome Farinas , Pascal Gaillard , Virginie Woisard
{"title":"Studying the neural correlates of upper aerodigestive tract functions under natural conditions: A protocol using functional near-infrared spectroscopy, cervical acoustics, and accelerometry","authors":"Yohan Gallois ,&nbsp;Jeanne Souche ,&nbsp;Yann Lemaire ,&nbsp;Lila Gravellier ,&nbsp;Pascal Barone ,&nbsp;Linda Nicolini ,&nbsp;Jérome Farinas ,&nbsp;Pascal Gaillard ,&nbsp;Virginie Woisard","doi":"10.1016/j.bosn.2025.04.002","DOIUrl":"10.1016/j.bosn.2025.04.002","url":null,"abstract":"<div><h3>Background</h3><div>The upper aerodigestive tract (UADT) is a complex structure with multiple synchronized vital functions, including swallowing and breathing, that rely on central neurological controls and cervical effectors. Reference UADT assessments have questionable limitations in natural conditions. Here, we describe our new protocol addressing these limitations. Our protocol combines three non-invasive technologies to evaluate UADT functions in natural conditions. We aim to correlate the cortical and cervical activities of UADT functions in a real-world context.</div></div><div><h3>New method</h3><div>Healthy subjects perform speech, coughing, throat clearing, and swallowing tasks in a natural sitting position. Cervical evaluation uses acoustic and accelerometric measures that reflect the laryngeal movements and bolus progression. We manually segment the events of each task. Functional near-infrared spectroscopy measures the concurrent cortical activity from the bilateral inferior pericentral regions, including the laryngeal sensorimotor cortices. We statistically compare event signal duration and bolus types under volitional and spontaneous conditions across the three technologies.</div></div><div><h3>Comparison with existing methods</h3><div>Reference UADT evaluations show limitations: cervical assessment references are irradiating (videofluoroscopy) or invasive (flexible nasal laryngoscopy); neurological assessment with functional magnetic resonance imaging (fMRI) does not allow swallowing in sitting position.</div></div><div><h3>Expected results and perspectives</h3><div>We aim to validate this protocol in natural settings and correlate cervical activity with cortical responses. This protocol opens perspectives to investigations on UADT functions in subjects currently with reduced access to gold standards, including children and dysphagic subjects with neurological dystonia.</div></div><div><h3>Conclusion</h3><div>We propose an innovative protocol for UADT evaluation in non-invasive natural conditions.</div></div>","PeriodicalId":100198,"journal":{"name":"Brain Organoid and Systems Neuroscience Journal","volume":"3 ","pages":"Pages 56-68"},"PeriodicalIF":0.0,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143816880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comprehensive review of in vitro gut-brain axis models in Parkinson’s disease research 帕金森病体外肠-脑轴模型研究综述
Brain Organoid and Systems Neuroscience Journal Pub Date : 2025-03-25 DOI: 10.1016/j.bosn.2025.03.002
John Nicholas Cauba, Jihoo Woo, Russell W. Wiggins, Shizue Mito
{"title":"Comprehensive review of in vitro gut-brain axis models in Parkinson’s disease research","authors":"John Nicholas Cauba,&nbsp;Jihoo Woo,&nbsp;Russell W. Wiggins,&nbsp;Shizue Mito","doi":"10.1016/j.bosn.2025.03.002","DOIUrl":"10.1016/j.bosn.2025.03.002","url":null,"abstract":"<div><div>This systematic review critically evaluates <em>in vitro</em> gut-brain axis models based on their effectiveness in advancing treatment strategies for Parkinson’s disease (PD). Models such as microfluidic devices, combined organ-on-a-chips (OOCs), and gut-brain organoids are analyzed for their ability to replicate key PD mechanisms, including intestinal barrier dysfunction, microbial dysbiosis, and α-synuclein aggregation. While these models are prospective tools in isolating facets of PD pathology such as microbiota modulation, neurotoxin transport, and neuroinflammation mitigation, challenges remain in their physiological relevance, scalability, and translational potential. This review discusses the designs and limitations of the latest <em>in vitro</em> models and identifies areas that may enhance their utility in developing effective treatments for PD.</div></div>","PeriodicalId":100198,"journal":{"name":"Brain Organoid and Systems Neuroscience Journal","volume":"3 ","pages":"Pages 44-55"},"PeriodicalIF":0.0,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143808376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Disrupted functional connectivity in carotid artery stenosis patients: Insights from fNIRS during a vasoreactivity test 颈动脉狭窄患者的功能连接中断:在血管反应性试验中从fNIRS获得的见解
Brain Organoid and Systems Neuroscience Journal Pub Date : 2025-03-21 DOI: 10.1016/j.bosn.2025.03.001
Víctor Sánchez , Luis Felipe Bortoletto , Caroline G. Mazala , Andrés Quiroga , Sergio Novi , Rickson C. Mesquita
{"title":"Disrupted functional connectivity in carotid artery stenosis patients: Insights from fNIRS during a vasoreactivity test","authors":"Víctor Sánchez ,&nbsp;Luis Felipe Bortoletto ,&nbsp;Caroline G. Mazala ,&nbsp;Andrés Quiroga ,&nbsp;Sergio Novi ,&nbsp;Rickson C. Mesquita","doi":"10.1016/j.bosn.2025.03.001","DOIUrl":"10.1016/j.bosn.2025.03.001","url":null,"abstract":"<div><div>Carotid artery stenosis (CAS) reduces cerebral perfusion, which can contribute to neurodegeneration and cognitive decline. While fMRI studies have identified CAS-related disruptions in functional connectivity (FC) associated with neurodegeneration, translating these methods to functional near-infrared spectroscopy (fNIRS) offers a portable, clinically practical alternative. In this study, we assessed FC using fNIRS in 44 CAS patients and 20 controls during breath-holding, a clinical vasoreactivity task. Our results demonstrate clear differences between FC during breath-holding and the resting state, highlighting the task's impact on network connectivity. Patients with unilateral mild stenosis (50–69 % occlusion) exhibited FC patterns comparable to those of controls, whereas patients with bilateral severe stenosis showed a 26 % reduced connectivity and a 14 % lower clustering. When accounting for time delays of 0.9–1.3 seconds, network synchrony was restored across all CAS groups, suggesting that the proposed fNIRS-based method can be used to investigate compensatory hemodynamic delays in CAS. Although sample size limits broader clinical generalizations, this work demonstrates the feasibility of using fNIRS for FC analysis in CAS during a vasodilatory task and provides evidence that fNIRS-based FC metrics are sensitive to CAS severity.</div></div>","PeriodicalId":100198,"journal":{"name":"Brain Organoid and Systems Neuroscience Journal","volume":"3 ","pages":"Pages 36-43"},"PeriodicalIF":0.0,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143679706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A simulated memristor architecture of neural networks of human memory 模拟人类记忆神经网络的忆阻器结构
Brain Organoid and Systems Neuroscience Journal Pub Date : 2025-02-25 DOI: 10.1016/j.bosn.2025.02.001
Tihomir Taskov, Juliana Dushanova
{"title":"A simulated memristor architecture of neural networks of human memory","authors":"Tihomir Taskov,&nbsp;Juliana Dushanova","doi":"10.1016/j.bosn.2025.02.001","DOIUrl":"10.1016/j.bosn.2025.02.001","url":null,"abstract":"<div><div>The project presents a hybrid approach between artificial intelligence and neuroscience as a more common framework to investigate the function-structure relationship, emphasizing the computational properties of neural networks. The human connectome will be reconstructed using electrophysiological studies, implemented as an artificial reservoir, and trained to perform memory tasks. By comparing connectome-informed reservoirs with arbitrary architectures, the computational properties of the human connectome will be optimized at a unique macroscale network topology and its mesoscale modular organization under critical network dynamics, assumed to perform optimal information processing. The hypothesis is that regardless of global network dynamics, the human connectome maximizes memory capacity by minimizing metabolic and material costs. The idea that the interplay of network dynamics and structure sustains and modulates the computational capacity of connectome-informed reservoirs may explain the spectrum of computational abilities of the anatomical macroscale brain network. By combining connectomics and reservoir computing, it will be possible to implement biologically derived network architectures and connectomes as artificial neural networks in memory tasks. Opportunities to investigate novel facets of the function-structure relationship in brain neuronal networks will arise from the adaptable approach concerning task paradigm, network dynamics, and architecture. Another question is how variations in the connectome architecture give rise to different developmental cognitive abilities in information and computational processing of neural networks. Artificial reservoirs such as memristors have been proposed to explore information processing aspects of the brain by combining modern electrophysiological computing tools and those from artificial intelligence, such as spiking artificial neural (memristor) networks.</div></div>","PeriodicalId":100198,"journal":{"name":"Brain Organoid and Systems Neuroscience Journal","volume":"3 ","pages":"Pages 25-35"},"PeriodicalIF":0.0,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143551467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impaired brain functional connectivity and complexity in mild cognitive decline 轻度认知能力下降的脑功能连通性和复杂性受损
Brain Organoid and Systems Neuroscience Journal Pub Date : 2025-02-21 DOI: 10.1016/j.bosn.2025.02.002
Natália de Carvalho Santos , Guilherme Gâmbaro , Lívia Lamas da Silva , Pedro Henrique Rodrigues da Silva , Renata Ferranti Leoni
{"title":"Impaired brain functional connectivity and complexity in mild cognitive decline","authors":"Natália de Carvalho Santos ,&nbsp;Guilherme Gâmbaro ,&nbsp;Lívia Lamas da Silva ,&nbsp;Pedro Henrique Rodrigues da Silva ,&nbsp;Renata Ferranti Leoni","doi":"10.1016/j.bosn.2025.02.002","DOIUrl":"10.1016/j.bosn.2025.02.002","url":null,"abstract":"<div><div>Mild cognitive impairment (MCI) is often considered a precursor to Alzheimer's disease (AD). Then, a better understanding of MCI neural correlates may inform more effective therapeutic interventions before irreversible changes occur in the brain, potentially delaying the onset of AD. Resting-state functional magnetic resonance imaging (rs-fMRI) has proven to be a powerful tool for investigating brain functional connectivity (FC) in MCI patients; however, integrating such analysis with graph theory and brain complexity (entropy) remains an underexplored yet promising avenue for understanding MCI-related changes. Therefore, we aimed to identify patterns of neural dysfunction and changes in brain complexity that may help differentiate mild cognitive decline from normal aging. We included 44 patients with an MCI diagnosis (75 ± 8 years; 26 men and 18 women) and 40 controls (77 ± 7 years; 26 men and 14 women). Conventional rs-FC served as a well-established foundation for further analyses. Graph theory was applied since it has gained prominence to investigate the structure of brain networks and identify patients with dementia. Sample entropy was measured to assess the complex and dynamic functioning of the brain. Reduced functional connectivity, cost, degree, entropy, and increased average path length were observed in MCI patients compared to controls. Alterations converged to temporal and frontal areas, insula, thalamus, and hippocampus and were involved in language processing, spatial attention and perception, and memory. Functional connectivity alterations seemed to precede topological changes expected for AD patients. Moreover, altered entropy suggested an initial brain disability to maintain efficient network integration in a memory-related region. Therefore, our findings emphasize the importance of integrating functional connectivity analysis, graph theory, and entropy to understand brain changes in MCI better. These complementary approaches offer a more comprehensive view of the neural dysfunctions associated with cognitive decline, providing a promising foundation for identifying biomarkers that could predict progression to neurodegenerative diseases, such as Alzheimer's disease.</div></div>","PeriodicalId":100198,"journal":{"name":"Brain Organoid and Systems Neuroscience Journal","volume":"3 ","pages":"Pages 15-24"},"PeriodicalIF":0.0,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143512259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Organoid intelligence and biocomputing advances: Current steps and future directions 类器官智能和生物计算进展:当前步骤和未来方向
Brain Organoid and Systems Neuroscience Journal Pub Date : 2025-01-29 DOI: 10.1016/j.bosn.2025.01.002
Al-Hassan Soliman Wadan
{"title":"Organoid intelligence and biocomputing advances: Current steps and future directions","authors":"Al-Hassan Soliman Wadan","doi":"10.1016/j.bosn.2025.01.002","DOIUrl":"10.1016/j.bosn.2025.01.002","url":null,"abstract":"<div><div>Organoid intelligence (OI) offers transformative potential across diverse fields, particularly in personalized medicine, biocomputing, and environmental sustainability. Here, we examine how the unique biological properties of organoids, which closely mimic human physiological processes, enable the development of advanced disease models, drug testing platforms, and sustainable bioengineered solutions. Researchers can address critical carbon capture, bioremediation, and pollution control challenges by integrating OI into computational systems. This review discusses the technological advancements that enable OI applications, including microfluidics, artificial intelligence, and electrophysiology while emphasizing the need for standardized protocols to foster reproducibility and scalability. Additionally, we address the ethical and legal considerations surrounding OI development, such as data privacy, potential misuse, and the emerging moral status of organoids with advanced cognitive-like properties. We highlight the Baltimore Declaration as a foundational framework for ensuring OI technologies align with ethical standards and societal benefits. OI's responsible advancement promises to revolutionize computational efficiency, improve healthcare outcomes, and address global challenges sustainably and equitably by fostering public engagement, interdisciplinary collaboration, and robust regulatory oversight.</div></div>","PeriodicalId":100198,"journal":{"name":"Brain Organoid and Systems Neuroscience Journal","volume":"3 ","pages":"Pages 8-14"},"PeriodicalIF":0.0,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143205411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cross-cultural differences in attention: An investigation through computational modelling 注意力的跨文化差异:基于计算模型的研究
Brain Organoid and Systems Neuroscience Journal Pub Date : 2025-01-21 DOI: 10.1016/j.bosn.2025.01.001
Eirini Mavritsaki , Stephanie Chua , Harriet A Allen , Panagiotis Rentzelas
{"title":"Cross-cultural differences in attention: An investigation through computational modelling","authors":"Eirini Mavritsaki ,&nbsp;Stephanie Chua ,&nbsp;Harriet A Allen ,&nbsp;Panagiotis Rentzelas","doi":"10.1016/j.bosn.2025.01.001","DOIUrl":"10.1016/j.bosn.2025.01.001","url":null,"abstract":"<div><h3>Background</h3><div>Behavioural research has shown that cultural membership can shape visual perception and attentional processes. In picture perception, members of collectivist cultures are more likely to attend the whole of the perceptual field than an individual salient item. Members of individualist cultures tend to attend the most salient object in the visual field. Understanding the brain processes that underlie these differences in visual attention is very important, as attentional processes can have significant impact on learning, navigation, communication and more. This study examines the perception of saliency among collectivist and individualist cultural groups using a computational modelling approach that is based on spiking neurons, the binding spiking Search over Time and Space (b-sSoTS) model. We simulated visual search for a salient target among distracters. We successfully simulated cross-cultural differences in early visual processes by altering the coupling parameter and varying the strength of connections between representations in the model. These findings indicate that the one of the potential causes of cross-cultural differences in visual perception can be the differences in encoding the mechanisms between individualist and collectivist cultural groups This study marks the first step investigating these processes by extending the behavioural research finding with computational modelling.</div></div>","PeriodicalId":100198,"journal":{"name":"Brain Organoid and Systems Neuroscience Journal","volume":"3 ","pages":"Pages 1-7"},"PeriodicalIF":0.0,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143093074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信