Yue Xu , Kartar Singh , Michael A. Beazely , Zoya Leonenko
{"title":"Trehalose, but not other sugars, protects HT22 cells against amyloid-beta toxicity","authors":"Yue Xu , Kartar Singh , Michael A. Beazely , Zoya Leonenko","doi":"10.1016/j.bosn.2025.04.005","DOIUrl":null,"url":null,"abstract":"<div><div>Trehalose sugar is being explored as a health supplement in Alzheimer’s Disease due to its neuroprotective potential, which is hypothesized to be mainly due to its regulation of pathological amyloid-beta (Aβ) production and aggregation via metabolic pathways. However, the impact of trehalose on neuronal systems against amyloid toxicity is unclear. This work presents a study of the impact of trehalose at different concentrations on HT22 cell viability and explores whether trehalose can directly reduce cell death caused by exogenous Aβ1–42 oligomers. We used an MTT cell viability assay to evaluate the viability of HT22 cells exposure to exogenous Aβ1–42 oligomers alone or in combination with trehalose and several other sugars. Our results reveal that trehalose has a protective effect on the cell viability against Aβ1–42 oligomers, while other sugars, lactulose, sucrose, and fructose, provided no protection against amyloid toxicity.</div></div>","PeriodicalId":100198,"journal":{"name":"Brain Organoid and Systems Neuroscience Journal","volume":"3 ","pages":"Pages 69-72"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Organoid and Systems Neuroscience Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949921625000110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Trehalose sugar is being explored as a health supplement in Alzheimer’s Disease due to its neuroprotective potential, which is hypothesized to be mainly due to its regulation of pathological amyloid-beta (Aβ) production and aggregation via metabolic pathways. However, the impact of trehalose on neuronal systems against amyloid toxicity is unclear. This work presents a study of the impact of trehalose at different concentrations on HT22 cell viability and explores whether trehalose can directly reduce cell death caused by exogenous Aβ1–42 oligomers. We used an MTT cell viability assay to evaluate the viability of HT22 cells exposure to exogenous Aβ1–42 oligomers alone or in combination with trehalose and several other sugars. Our results reveal that trehalose has a protective effect on the cell viability against Aβ1–42 oligomers, while other sugars, lactulose, sucrose, and fructose, provided no protection against amyloid toxicity.