Biosensors最新文献

筛选
英文 中文
Electrotactile BCI for Top-Down Somatosensory Training: Clinical Feasibility Trial of Online BCI Control in Subacute Stroke Patients 用于自上而下躯体感觉训练的电接触BCI:亚急性脑卒中患者在线 BCI 控制的临床可行性试验
Biosensors Pub Date : 2024-07-28 DOI: 10.3390/bios14080368
Andrej M. Savić, Marija Novičić, Vera Miler-Jerković, Olivera Djordjević, Ljubica Konstantinović
{"title":"Electrotactile BCI for Top-Down Somatosensory Training: Clinical Feasibility Trial of Online BCI Control in Subacute Stroke Patients","authors":"Andrej M. Savić, Marija Novičić, Vera Miler-Jerković, Olivera Djordjević, Ljubica Konstantinović","doi":"10.3390/bios14080368","DOIUrl":"https://doi.org/10.3390/bios14080368","url":null,"abstract":"This study investigates the feasibility of a novel brain–computer interface (BCI) device designed for sensory training following stroke. The BCI system administers electrotactile stimuli to the user’s forearm, mirroring classical sensory training interventions. Concurrently, selective attention tasks are employed to modulate electrophysiological brain responses (somatosensory event-related potentials—sERPs), reflecting cortical excitability in related sensorimotor areas. The BCI identifies attention-induced changes in the brain’s reactions to stimulation in an online manner. The study protocol assesses the feasibility of online binary classification of selective attention focus in ten subacute stroke patients. Each experimental session includes a BCI training phase for data collection and classifier training, followed by a BCI test phase to evaluate online classification of selective tactile attention based on sERP. During online classification tests, patients complete 20 repetitions of selective attention tasks with feedback on attention focus recognition. Using a single electroencephalographic channel, attention classification accuracy ranges from 70% to 100% across all patients. The significance of this novel BCI paradigm lies in its ability to quantitatively measure selective tactile attention resources throughout the therapy session, introducing a top-down approach to classical sensory training interventions based on repeated neuromuscular electrical stimulation.","PeriodicalId":100185,"journal":{"name":"Biosensors","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141864189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CRISPR-Based Biosensors for Medical Diagnosis: Readout from Detector-Dependence Detection Toward Naked Eye Detection 基于 CRISPR 的医疗诊断生物传感器:从检测器依赖性检测到裸眼检测的读出
Biosensors Pub Date : 2024-07-28 DOI: 10.3390/bios14080367
Kai Hu, Weihong Yin, Yunhan Bai, Jiarui Zhang, Juxin Yin, Qiangyuan Zhu, Ying Mu
{"title":"CRISPR-Based Biosensors for Medical Diagnosis: Readout from Detector-Dependence Detection Toward Naked Eye Detection","authors":"Kai Hu, Weihong Yin, Yunhan Bai, Jiarui Zhang, Juxin Yin, Qiangyuan Zhu, Ying Mu","doi":"10.3390/bios14080367","DOIUrl":"https://doi.org/10.3390/bios14080367","url":null,"abstract":"The detection of biomarkers (such as DNA, RNA, and protein) plays a vital role in medical diagnosis. The CRISPR-based biosensors utilize the CRISPR/Cas system for biometric recognition of targets and use biosensor strategy to read out biological signals without the employment of professional operations. Consequently, the CRISPR-based biosensors demonstrate great potential for the detection of biomarkers with high sensitivity and specificity. However, the signal readout still relies on specialized detectors, limiting its application in on-site detection for medical diagnosis. In this review, we summarize the principles and advances of the CRISPR-based biosensors with a focus on medical diagnosis. Then, we review the advantages and progress of CRISPR-based naked eye biosensors, which can realize diagnosis without additional detectors for signal readout. Finally, we discuss the challenges and further prospects for the development of CRISPR-based biosensors.","PeriodicalId":100185,"journal":{"name":"Biosensors","volume":"195 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141864338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification and Quantification of Extracellular Vesicles: Comparison of SDS-PAGE Analysis and Biosensor Analysis with QCM and IDT Chips 细胞外囊泡的鉴定和定量:SDS-PAGE 分析与 QCM 和 IDT 芯片生物传感器分析的比较
Biosensors Pub Date : 2024-07-27 DOI: 10.3390/bios14080366
Yaw-Jen Chang, Wen-Tung Yang, Cheng-Hsuan Lei
{"title":"Identification and Quantification of Extracellular Vesicles: Comparison of SDS-PAGE Analysis and Biosensor Analysis with QCM and IDT Chips","authors":"Yaw-Jen Chang, Wen-Tung Yang, Cheng-Hsuan Lei","doi":"10.3390/bios14080366","DOIUrl":"https://doi.org/10.3390/bios14080366","url":null,"abstract":"This study presents and compares two methods for identifying the types of extracellular vesicles (EVs) from different cell lines. Through SDS-PAGE analysis, we discovered that the ratio of CD63 to CD81 in different EVs is consistent and distinct, making it a reliable characteristic for recognizing EVs secreted by cancer cells. However, the electrophoresis and imaging processes may introduce errors in the concentration values, especially at lower concentrations, rendering this method potentially less effective. An alternative approach involves the use of quartz crystal microbalance (QCM) and electroanalytical interdigitated electrode (IDT) biosensors for EV type identification and quantification. The QCM frequency shift caused by EVs is directly proportional to their concentration, while electroanalysis relies on measuring the curvature of the I−V curve as a distinguishing feature, which is also proportional to EV concentration. Linear regression lines for the QCM frequency shift and the electroanalysis curvature of various EV types are plotted separately, enabling the estimation of the corresponding concentration for an unknown EV type on the graphs. By intersecting the results from both biosensors, the unknown EV type can be identified. The biosensor analysis method proves to be an effective means of analyzing both the type and concentration of EVs from different cell lines.","PeriodicalId":100185,"journal":{"name":"Biosensors","volume":"74 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141774550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced Stability and Detection Range of Microbial Electrochemical Biotoxicity Sensor by Polydopamine Encapsulation 聚多巴胺封装技术提高了微生物电化学生物毒性传感器的稳定性和检测范围
Biosensors Pub Date : 2024-07-26 DOI: 10.3390/bios14080365
Zengfu Guan, Jiaguo Yan, Haiyuan Yan, Bin Li, Lei Guo, Qiang Sun, Tie Geng, Xiaoxuan Guo, Lidong Liu, Wenqing Yan, Xin Wang
{"title":"Enhanced Stability and Detection Range of Microbial Electrochemical Biotoxicity Sensor by Polydopamine Encapsulation","authors":"Zengfu Guan, Jiaguo Yan, Haiyuan Yan, Bin Li, Lei Guo, Qiang Sun, Tie Geng, Xiaoxuan Guo, Lidong Liu, Wenqing Yan, Xin Wang","doi":"10.3390/bios14080365","DOIUrl":"https://doi.org/10.3390/bios14080365","url":null,"abstract":"With the rapid development of modern industry, it is urgently needed to measure the biotoxicity of complex chemicals. Microbial electrochemical biotoxicity sensors are an attractive technology; however, their application is usually limited by their stability and reusability after measurements. Here, we improve their performance by encapsulating the electroactive biofilm with polydopamine (PDA), and we evaluate the improvement by different concentrations of heavy metal ions (Cu2+, Ag+, and Fe3+) in terms of inhibition ratio (IR) and durability. Results indicate that the PDA-encapsulated sensor exhibits a more significant detection concentration than the control group, with a 3-fold increase for Cu2+ and a 1.5-fold increase for Ag+. Moreover, it achieves 15 more continuous toxicity tests than the control group, maintaining high electrochemical activity even after continuous toxicity impacts. Images from a confocal laser scanning microscope reveal that the PDA encapsulation protects the activity of the electroactive biofilm. The study, thus, demonstrates that PDA encapsulation is efficacious in improving the performance of microbial electrochemical biotoxicity sensors, which can extend its application to more complex media.","PeriodicalId":100185,"journal":{"name":"Biosensors","volume":"67 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141774458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Label-Free and Ultra-Sensitive Detection of Dexamethasone Using a FRET Aptasensor Utilizing Cationic Conjugated Polymers 利用阳离子共轭聚合物的 FRET 光传感器实现地塞米松的无标记和超灵敏检测
Biosensors Pub Date : 2024-07-26 DOI: 10.3390/bios14080364
Yizhang Xue, Hangbing Liu, Ye Zhang, Weijun Yang, Huixin Li, Yuxuan Gong, Yubai Zhang, Bo Li, Chang Liu, Yi Li
{"title":"Label-Free and Ultra-Sensitive Detection of Dexamethasone Using a FRET Aptasensor Utilizing Cationic Conjugated Polymers","authors":"Yizhang Xue, Hangbing Liu, Ye Zhang, Weijun Yang, Huixin Li, Yuxuan Gong, Yubai Zhang, Bo Li, Chang Liu, Yi Li","doi":"10.3390/bios14080364","DOIUrl":"https://doi.org/10.3390/bios14080364","url":null,"abstract":"Dexamethasone (Dex) is a widely used glucocorticoid in medical practice, with applications ranging from allergies and inflammation to cerebral edema and shock. Despite its therapeutic benefits, Dex is classified as a prohibited substance for athletes due to its potential performance-enhancing effects. Consequently, there is a critical need for a convenient and rapid detection platform to enable prompt and accurate testing of this drug. In this study, we propose a label-free Förster Resonance Energy Transfer (FRET) aptasensor platform for Dex detection utilizing conjugated polymers (CPs), cationic conjugated polymers (CCPs), and gene finder probes (GFs). The system operates by exploiting the electrostatic interactions between positively charged CCPs and negatively charged DNA, facilitating sensitive and specific Dex detection. The label-free FRET aptasensor platform demonstrated robust performance in detecting Dex, exhibiting high selectivity and sensitivity. The system effectively distinguished Dex from interfering molecules and achieved stable detection across a range of concentrations in a commonly used sports drink matrix. Overall, the label-free FRET Dex detection system offers a simple, cost-effective, and highly sensitive approach for detecting Dex in diverse sample matrices. Its simplicity and effectiveness make it a promising tool for anti-doping efforts and other applications requiring rapid and accurate Dex detection.","PeriodicalId":100185,"journal":{"name":"Biosensors","volume":"351 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141774596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced Nanoparticle Recognition via Deep Learning-Accelerated Plasmonic Sensing 通过深度学习加速等离子传感增强纳米粒子识别能力
Biosensors Pub Date : 2024-07-26 DOI: 10.3390/bios14080363
Ke-Xin Jin, Jia Shen, Yi-Jing Wang, Yu Yang, Shuo-Hui Cao
{"title":"Enhanced Nanoparticle Recognition via Deep Learning-Accelerated Plasmonic Sensing","authors":"Ke-Xin Jin, Jia Shen, Yi-Jing Wang, Yu Yang, Shuo-Hui Cao","doi":"10.3390/bios14080363","DOIUrl":"https://doi.org/10.3390/bios14080363","url":null,"abstract":"Surface plasmon microscopy proves to be a potent tool for capturing interferometric scattering imaging data of individual particles at both micro and nanoscales, offering considerable potential for label-free analysis of bio-particles and bio-molecules such as exosomes, viruses, and bacteria. However, the manual analysis of acquired images remains a challenge, particularly when dealing with dense samples or strong background noise, common in practical measurements. Manual analysis is not only prone to errors but is also time-consuming, especially when handling a large volume of experimental images. Currently, automated methods for sensing and analysis of such data are lacking. In this paper, we develop an accelerated approach for surface plasmon microscopy imaging of individual particles based on combining the interference scattering model of single particle and deep learning processing. We create hybrid datasets by combining the theoretical simulation of particle images with the actual measurements. Subsequently, we construct a neural network utilizing the EfficientNet architecture. Our results demonstrate the effectiveness of this novel deep learning technique in classifying interferometric scattering images and identifying multiple particles under noisy conditions. This advancement paves the way for practical bio-applications through efficient automated particle analysis.","PeriodicalId":100185,"journal":{"name":"Biosensors","volume":"67 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141774551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanosensor-Enabled Detection and Identification of Intracellular Bacterial Infections in Macrophages 利用纳米传感器检测和识别巨噬细胞中的细胞内细菌感染
Biosensors Pub Date : 2024-07-25 DOI: 10.3390/bios14080360
Aritra Nath Chattopadhyay, Mingdi Jiang, Jessa Marie V. Makabenta, Jungmi Park, Yingying Geng, Vincent Rotello
{"title":"Nanosensor-Enabled Detection and Identification of Intracellular Bacterial Infections in Macrophages","authors":"Aritra Nath Chattopadhyay, Mingdi Jiang, Jessa Marie V. Makabenta, Jungmi Park, Yingying Geng, Vincent Rotello","doi":"10.3390/bios14080360","DOIUrl":"https://doi.org/10.3390/bios14080360","url":null,"abstract":"Opportunistic bacterial pathogens can evade the immune response by residing and reproducing within host immune cells, including macrophages. These intracellular infections provide reservoirs for pathogens that enhance the progression of infections and inhibit therapeutic strategies. Current sensing strategies for intracellular infections generally use immunosensing of specific biomarkers on the cell surface or polymerase chain reaction (PCR) of the corresponding nucleic acids, making detection difficult, time-consuming, and challenging to generalize. Intracellular infections can induce changes in macrophage glycosylation, providing a potential strategy for signature-based detection of intracellular infections. We report here the detection of bacterial infection in macrophages using a boronic acid (BA)-based pH-responsive polymer sensor array engineered to distinguish mammalian cell phenotypes by their cell surface glycosylation signatures. The sensor was able to discriminate between different infecting bacteria in minutes, providing a promising tool for diagnostic and screening applications.","PeriodicalId":100185,"journal":{"name":"Biosensors","volume":"15 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141774598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wearable Sensors Based on Miniaturized High-Performance Hybrid Nanogenerator for Medical Health Monitoring 基于微型高性能混合纳米发电机的可穿戴传感器,用于医疗健康监测
Biosensors Pub Date : 2024-07-25 DOI: 10.3390/bios14080361
Jinjing Wu, Xiaobo Lin, Chengkai Yang, Sirui Yang, Chenning Liu, Yuanyuan Cao
{"title":"Wearable Sensors Based on Miniaturized High-Performance Hybrid Nanogenerator for Medical Health Monitoring","authors":"Jinjing Wu, Xiaobo Lin, Chengkai Yang, Sirui Yang, Chenning Liu, Yuanyuan Cao","doi":"10.3390/bios14080361","DOIUrl":"https://doi.org/10.3390/bios14080361","url":null,"abstract":"Wearable sensors are important components, converting mechanical vibration energy into electrical signals or other forms of output, which are widely used in healthcare, disaster warning, and transportation. However, the reliance on batteries limits the portability of wearable sensors and hinders their application in the field of Internet of Things. To solve this problem, we designed a miniaturized high-performance hybrid nanogenerator (MHP-HNG), which combined the functions of triboelectric sensing and electromagnetic power generation as well as the advantages of miniaturization. By optimizing the design of TENG and EMG, the wearable sensor achieved a voltage output of 14.14 V and a power output of 49 mW. Based on the wireless optical communication and wireless communication technologies, the wearable sensor achieved the integration of sensing, communication, and self-powered function, which is expected to realize health monitoring, emergency warning, and rehabilitation assistance, and further extend the potential application value in the medical field.","PeriodicalId":100185,"journal":{"name":"Biosensors","volume":"57 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141774599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Role of TIM-1 and CD300a in Zika Virus Infection Investigated with Cell-Based Electrical Impedance 利用细胞电阻抗研究 TIM-1 和 CD300a 在寨卡病毒感染中的作用
Biosensors Pub Date : 2024-07-25 DOI: 10.3390/bios14080362
Merel Oeyen, Clément J. F. Heymann, Maarten Jacquemyn, Dirk Daelemans, Dominique Schols
{"title":"The Role of TIM-1 and CD300a in Zika Virus Infection Investigated with Cell-Based Electrical Impedance","authors":"Merel Oeyen, Clément J. F. Heymann, Maarten Jacquemyn, Dirk Daelemans, Dominique Schols","doi":"10.3390/bios14080362","DOIUrl":"https://doi.org/10.3390/bios14080362","url":null,"abstract":"Orthoflaviviruses cause a major threat to global public health, and no antiviral treatment is available yet. Zika virus (ZIKV) entry, together with many other viruses, is known to be enhanced by phosphatidylserine (PS) receptors such as T-cell immunoglobulin mucin domain protein 1 (TIM-1). In this study, we demonstrate for the first time, using cell-based electrical impedance (CEI) biosensing, that ZIKV entry is also enhanced by expression of CD300a, another PS receptor. Furthermore, inhibiting CD300a in immature monocyte-derived dendritic cells partially but significantly inhibits ZIKV replication. As we have previously demonstrated that CEI is a useful tool to study Orthoflavivirus infection in real time, we now use this technology to determine how these PS receptors influence the kinetics of in vitro ZIKV infection. Results show that ZIKV entry is highly sensitive to minor changes in TIM-1 expression, both after overexpression of TIM-1 in infection-resistant HEK293T cells, as well as after partial knockout of TIM-1 in susceptible A549 cells. These results are confirmed by quantification of viral copy number and viral infectivity, demonstrating that CEI is highly suited to study and compare virus-host interactions. Overall, the results presented here demonstrate the potential of targeting this universal viral entry pathway.","PeriodicalId":100185,"journal":{"name":"Biosensors","volume":"49 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141774600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Far-Red Fluorescent Proteins: Tools for Advancing In Vivo Imaging 远红外荧光蛋白:推进体内成像的工具
Biosensors Pub Date : 2024-07-24 DOI: 10.3390/bios14080359
Angyang Shang, Shuai Shao, Luming Zhao, Bo Liu
{"title":"Far-Red Fluorescent Proteins: Tools for Advancing In Vivo Imaging","authors":"Angyang Shang, Shuai Shao, Luming Zhao, Bo Liu","doi":"10.3390/bios14080359","DOIUrl":"https://doi.org/10.3390/bios14080359","url":null,"abstract":"Far-red fluorescent proteins (FPs) have emerged as indispensable tools in in vivo imaging, playing a pivotal role in elucidating fundamental mechanisms and addressing application issues in biotechnology and biomedical fields. Their ability for deep penetration, coupled with reduced light scattering and absorption, robust resistance to autofluorescence, and diminished phototoxicity, has positioned far-red biosensors at the forefront of non-invasive visualization techniques for observing intracellular activities and intercellular behaviors. In this review, far-red FPs and their applications in living systems are mainly discussed. Firstly, various far-red FPs, characterized by emission peaks spanning from 600 nm to 650 nm, are introduced. This is followed by a detailed presentation of the fundamental principles enabling far-red biosensors to detect biomolecules and environmental changes. Furthermore, the review accentuates the superiority of far-red FPs in multi-color imaging. In addition, significant emphasis is placed on the value of far-red FPs in improving imaging resolution, highlighting their great contribution to the advancement of in vivo imaging.","PeriodicalId":100185,"journal":{"name":"Biosensors","volume":"40 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141774601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信