{"title":"Ultrasensitive Electrochemical Biosensors Based on Allosteric Transcription Factors (aTFs) for Pb2+ Detection","authors":"Ningkang Yu, Chen Zhao, Xiaodan Kang, Cheng Zhang, Xi Zhang, Chenyu Li, Shang Wang, Bin Xue, Xiaobo Yang, Chao Li, Zhigang Qiu, Jingfeng Wang, Zhiqiang Shen","doi":"10.3390/bios14090446","DOIUrl":"https://doi.org/10.3390/bios14090446","url":null,"abstract":"Exposure to Pb2+ in the environment, especially in water, poses a significant threat to human health and urgently necessitates the development of highly sensitive Pb2+ detection methods. In this study, we have integrated the high sensitivity of electrochemical techniques with allosteric transcription factors (aTFs) to develop an innovative electrochemical biosensing platform. This biosensors leverage the specific binding and dissociation of DNA to the aTFs (PbrR) on electrode surfaces to detect Pb2+. Under the optimal conditions, the platform has a broad linear detection range from 1 pM to 10 nM and an exceptionally low detection threshold of 1 pM, coupled with excellent selectivity for Pb2+. Notably, the biosensor demonstrates regenerative capabilities, enabling up to five effective Pb2+ measurements. After one week of storage at 4 °C, effective lead ion detection was still possible, demonstrating the biosensor’s excellent stability, this can effectively save the cost of detection. The biosensor also achieves a recovery rate of 93.3% to 106.6% in real water samples. The biosensor shows its potential as a robust tool for the ultrasensitive detection of Pb2+ in environmental monitoring. Moreover, this research provides new insights into the future applications of aTFs in electrochemical sensing.","PeriodicalId":100185,"journal":{"name":"Biosensors","volume":"8 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142264577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiosensorsPub Date : 2024-09-18DOI: 10.3390/bios14090444
Esma Eser, Victoria A. Felton, Rishi Drolia, Arun K. Bhunia
{"title":"Salmonella Detection in Food Using a HEK-hTLR5 Reporter Cell-Based Sensor","authors":"Esma Eser, Victoria A. Felton, Rishi Drolia, Arun K. Bhunia","doi":"10.3390/bios14090444","DOIUrl":"https://doi.org/10.3390/bios14090444","url":null,"abstract":"The development of a rapid, sensitive, specific method for detecting foodborne pathogens is paramount for supplying safe food to enhance public health safety. Despite the significant improvement in pathogen detection methods, key issues are still associated with rapid methods, such as distinguishing living cells from dead, the pathogenic potential or health risk of the analyte at the time of consumption, the detection limit, and the sample-to-result. Mammalian cell-based assays analyze pathogens’ interaction with host cells and are responsive only to live pathogens or active toxins. In this study, a human embryonic kidney (HEK293) cell line expressing Toll-Like Receptor 5 (TLR-5) and chromogenic reporter system (HEK dual hTLR5) was used for the detection of viable Salmonella in a 96-well tissue culture plate. This cell line responds to low concentrations of TLR5 agonist flagellin. Stimulation of TLR5 ligand activates nuclear factor-kB (NF-κB)—linked alkaline phosphatase (AP-1) signaling cascade inducing the production of secreted embryonic alkaline phosphatase (SEAP). With the addition of a ρ-nitrophenyl phosphate as a substrate, a colored end product representing a positive signal is quantified. The assay’s specificity was validated with the top 20 Salmonella enterica serovars and 19 non-Salmonella spp. The performance of the assay was also validated with spiked food samples. The total detection time (sample-to-result), including shortened pre-enrichment (4 h) and selective enrichment (4 h) steps with artificially inoculated outbreak-implicated food samples (chicken, peanut kernel, peanut butter, black pepper, mayonnaise, and peach), was 15 h when inoculated at 1–100 CFU/25 g sample. These results show the potential of HEK-DualTM hTLR5 cell-based functional biosensors for the rapid screening of Salmonella.","PeriodicalId":100185,"journal":{"name":"Biosensors","volume":"105 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142264682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiosensorsPub Date : 2024-09-18DOI: 10.3390/bios14090445
Shiva Akhtarian, Satinder Kaur Brar, Pouya Rezai
{"title":"Electrochemical Impedance Spectroscopy-Based Microfluidic Biosensor Using Cell-Imprinted Polymers for Bacteria Detection","authors":"Shiva Akhtarian, Satinder Kaur Brar, Pouya Rezai","doi":"10.3390/bios14090445","DOIUrl":"https://doi.org/10.3390/bios14090445","url":null,"abstract":"The rapid and sensitive detection of bacterial contaminants using low-cost and portable point-of-need (PoN) biosensors has gained significant interest in water quality monitoring. Cell-imprinted polymers (CIPs) are emerging as effective and inexpensive materials for bacterial detection as they provide specific binding sites designed to capture whole bacterial cells, especially when integrated into PoN microfluidic devices. However, improving the sensitivity and detection limits of these sensors remains challenging. In this study, we integrated CIP-functionalized stainless steel microwires (CIP-MWs) into a microfluidic device for the impedimetric detection of E. coli bacteria. The sensor featured two parallel microchannels with three-electrode configurations that allowed simultaneous control and electrochemical impedance spectroscopy (EIS) measurements. A CIP-MW and a non-imprinted polymer (NIP)-MW suspended perpendicular to the microchannels served as the working electrodes in the test and control channels, respectively. Electrochemical spectra were fitted with equivalent electrical circuits, and the charge transfer resistances of both cells were measured before and after incubation with target bacteria. The charge transfer resistance of the CIP-MWs after 30 min of incubation with bacteria was increased. By normalizing the change in charge transfer resistance and analyzing the dose–response curve for bacterial concentrations ranging from 0 to 107 CFU/mL, we determined the limits of detection and quantification as 2 × 102 CFU/mL and 1.4 × 104 CFU/mL, respectively. The sensor demonstrated a dynamic range of 102 to 107 CFU/mL, where bacterial counts were statistically distinguishable. The proposed sensor offers a sensitive, cost-effective, durable, and rapid solution for on-site identification of waterborne pathogens.","PeriodicalId":100185,"journal":{"name":"Biosensors","volume":"35 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142264576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiosensorsPub Date : 2024-09-14DOI: 10.3390/bios14090443
Joseph Broomfield, Melpomeni Kalofonou, Charlotte L. Bevan, Pantelis Georgiou
{"title":"Recent Electrochemical Advancements for Liquid-Biopsy Nucleic Acid Detection for Point-of-Care Prostate Cancer Diagnostics and Prognostics","authors":"Joseph Broomfield, Melpomeni Kalofonou, Charlotte L. Bevan, Pantelis Georgiou","doi":"10.3390/bios14090443","DOIUrl":"https://doi.org/10.3390/bios14090443","url":null,"abstract":"Current diagnostic and prognostic tests for prostate cancer require specialised laboratories and have low specificity for prostate cancer detection. As such, recent advancements in electrochemical devices for point of care (PoC) prostate cancer detection have seen significant interest. Liquid-biopsy detection of relevant circulating and exosomal nucleic acid markers presents the potential for minimally invasive testing. In combination, electrochemical devices and circulating DNA and RNA detection present an innovative approach for novel prostate cancer diagnostics, potentially directly within the clinic. Recent research in electrochemical impedance spectroscopy, voltammetry, chronoamperometry and potentiometric sensing using field-effect transistors will be discussed. Evaluation of the PoC relevance of these techniques and their fulfilment of the WHO’s REASSURED criteria for medical diagnostics is described. Further areas for exploration within electrochemical PoC testing and progression to clinical implementation for prostate cancer are assessed.","PeriodicalId":100185,"journal":{"name":"Biosensors","volume":"21 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142269191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiosensorsPub Date : 2024-09-14DOI: 10.3390/bios14090442
Yan Nan, Peng Zuo, Bangce Ye
{"title":"Paper-Based Microfluidic Device for Extracellular Lactate Detection","authors":"Yan Nan, Peng Zuo, Bangce Ye","doi":"10.3390/bios14090442","DOIUrl":"https://doi.org/10.3390/bios14090442","url":null,"abstract":"Lactate is a critical regulatory factor secreted by tumors, influencing tumor development, metastasis, and clinical prognosis. Precise analysis of tumor-cell-secreted lactate is pivotal for early cancer diagnosis. This study describes a paper-based microfluidic chip to enable the detection of lactate levels secreted externally by living cells. Under optimized conditions, the lactate biosensor can complete the assay in less than 30 min. In addition, the platform can be used to distinguish lactate secretion levels in different cell lines and can be applied to the screening of antitumor drugs. Through enzymatic chemical conversion, this platform generates fluorescent signals, enabling qualitative assessment under a handheld UV lamp and quantitative analysis via grayscale intensity measurements using ImageJ (Ver. 1.50i) software. The paper-based platform presented in this study is rapid and highly sensitive and does not necessitate other costly and intricate instruments, thus making it applicable in resource-constrained areas and serving as a valuable tool for investigating cell lactate secretion and screening various anti-cancer drugs.","PeriodicalId":100185,"journal":{"name":"Biosensors","volume":"37 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142264578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiosensorsPub Date : 2024-09-13DOI: 10.3390/bios14090440
Qiyuan Xu, Mingjun Sun, Weijin Wang, Yanpeng Shi
{"title":"All-Dielectric Metasurface-Based Terahertz Molecular Fingerprint Sensor for Trace Cinnamoylglycine Detection","authors":"Qiyuan Xu, Mingjun Sun, Weijin Wang, Yanpeng Shi","doi":"10.3390/bios14090440","DOIUrl":"https://doi.org/10.3390/bios14090440","url":null,"abstract":"Terahertz (THZ) spectroscopy has emerged as a superior label-free sensing technology in the detection, identification, and quantification of biomolecules in various biological samples. However, the limitations in identification and discrimination sensitivity of current methods impede the wider adoption of this technology. In this article, a meticulously designed metasurface is proposed for molecular fingerprint enhancement, consisting of a periodic array of lithium tantalate triangular prism tetramers arranged in a square quartz lattice. The physical mechanism is explained by the finite-difference time-domain (FDTD) method. The metasurface achieves a high quality factor (Q-factor) of 231 and demonstrates excellent THz sensing capabilities with a figure of merit (FoM) of 609. By varying the incident angle of the THz wave, the molecular fingerprint signal is strengthened, enabling the highly sensitive detection of trace amounts of analyte. Consequently, cinnamoylglycine can be detected with a sensitivity limit as low as 1.23 μg·cm−2. This study offers critical insights into the advanced application of THz waves in biomedicine, particularly for the detection of urinary biomarkers in various diseases, including gestational diabetes mellitus (GDM).","PeriodicalId":100185,"journal":{"name":"Biosensors","volume":"43 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiosensorsPub Date : 2024-09-13DOI: 10.3390/bios14090441
Sergio de Armas-Rillo, Beatriz Abdul-Jalbar, Josmar Salas-Hernández, Jose María Raya-Sánchez, Tomás González-Hernández, Fernando Lahoz
{"title":"Analysis of Random Lasing in Human Blood","authors":"Sergio de Armas-Rillo, Beatriz Abdul-Jalbar, Josmar Salas-Hernández, Jose María Raya-Sánchez, Tomás González-Hernández, Fernando Lahoz","doi":"10.3390/bios14090441","DOIUrl":"https://doi.org/10.3390/bios14090441","url":null,"abstract":"Random lasing (RL) is an optical phenomenon that arises from the combination of light amplification with optical feedback through multiple scattering events. In this paper, we present our investigations of RL generation from human blood samples. We tested mixtures of rhodamine B dye solutions with different blood components, including platelets, lymphocytes, erythrocytes, and whole blood. Intense coherent RL was obtained in all cases at relatively low pump thresholds, except for erythrocytes. We also studied the potential of RL signal analysis for biosensing applications using blood samples from healthy individuals and patients suffering from Chronic Lymphocytic Leukemia (CLL). CLL is a blood disease characterized by a high count of lymphocytes with significant morphological changes. A statistical analysis of the RL spectra based on principal component and linear discriminant analyses was conducted for classification purposes. RL-based sample discrimination was conducted for whole blood, platelet, and lymphocyte samples, being especially successful (86.7%) for the latter. Our results highlight the potential of RL analysis as a sensing tool in blood.","PeriodicalId":100185,"journal":{"name":"Biosensors","volume":"14 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigation of Interferences of Wearable Sensors with Plant Growth","authors":"Xiao Xiao, Xinyue Liu, Yanbo Liu, Chengjin Tu, Menglong Qu, Jingjing Kong, Yongnian Zhang, Cheng Zhang","doi":"10.3390/bios14090439","DOIUrl":"https://doi.org/10.3390/bios14090439","url":null,"abstract":"Plant wearable sensors have shown exceptional promise in continuously monitoring plant health. However, the potential adverse effects of these sensors on plant growth remain unclear. This study systematically quantifies wearable sensors’ interference with plant growth using two ornamental species, Peperomia tetraphylla and Epipremnum aureum. We evaluated the impacts of four common disturbances—mechanical pressure, hindrance of gas exchange, hindrance of light acquisition, and mechanical constraint—on leaf growth. Our results indicated that the combination of light hindrance and mechanical constraint demonstrated the most significant interference. When the sensor weight was no greater than 0.6 g and the coverage was no greater than 5% of the leaf area, these four disturbances resulted in slight impacts on leaf growth. Additionally, we fabricated a minimally interfering wearable sensor capable of measuring the air temperature of the microclimate of the plant while maintaining plant growth. This research provides valuable insights into optimizing plant wearable sensors, balancing functionality with minimal plant interference.","PeriodicalId":100185,"journal":{"name":"Biosensors","volume":"6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiosensorsPub Date : 2024-09-09DOI: 10.3390/bios14090436
Ruixin Li, Jin Li, Xianbo Lu, Fanli Meng, Jiping Chen
{"title":"Ultrasensitive Electrochemical Biosensor for Rapid Screening of Chemicals with Estrogenic Effect","authors":"Ruixin Li, Jin Li, Xianbo Lu, Fanli Meng, Jiping Chen","doi":"10.3390/bios14090436","DOIUrl":"https://doi.org/10.3390/bios14090436","url":null,"abstract":"Estrogenic chemicals are widely distributed and structurally diverse. They primarily disrupt estrogen-related metabolism in animals or humans by mimicking the agonistic receptor effects of natural estrogens, thereby influencing the transcription of estrogen receptors to regulate their quantity and sensitivity. This disruption of estrogen-related metabolism can lead to estrogen-related effects, posing risks to biological health, emphasizing the urgent need for simple and effective methods to screen compounds with estrogenic effects. Herein, a new electrochemical biological effect biosensor based on human estrogen receptor α (hERα) is developed, which uses hERα as the biorecognition element and employs the electroactive horseradish peroxidase (HRP) labeled 17β-estradiol (E2) multifunctional conjugate HRP-E2 as the signal-boosting element and ligand competition agent. Based on the specific ligand–receptor interaction principle between the target and nuclear receptor, by allowing the test compound to compete with HRP-E2 conjugate for binding to hERα and testing the electrocatalytic signal of the conjugate that fails to bind to the hERα estrogen receptor, rapid screening and quantitative detection of chemical substances with estrogenic effect have been achieved. The biosensor shows a wide linear range of 40 pM to 40 nM with a detection limit of 17 pM (S/N = 3) for E2, and the detection limit is 2 orders of magnitude better than that of the previously reported sensors. The biosensor based on ligand–receptor binding can not only quantitatively analyze the typical estrogen E2, but also evaluate the relative estrogen effect strength of other estrogen compounds, which has good stability and selectivity. This electrochemical sensing platform displays its promising potential for rapid screening and quantitative detection of chemicals with estrogenic effects.","PeriodicalId":100185,"journal":{"name":"Biosensors","volume":"66 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiosensorsPub Date : 2024-09-09DOI: 10.3390/bios14090437
René Thull, Sybelle Goedicke-Fritz, Daniel Schmiech, Aly Marnach, Simon Müller, Christina Körbel, Matthias W. Laschke, Erol Tutdibi, Nasenien Nourkami-Tutdibi, Elisabeth Kaiser, Regine Weber, Michael Zemlin, Andreas R. Diewald
{"title":"Investigation of a Camera-Based Contactless Pulse Oximeter with Time-Division Multiplex Illumination Applied on Piglets for Neonatological Applications","authors":"René Thull, Sybelle Goedicke-Fritz, Daniel Schmiech, Aly Marnach, Simon Müller, Christina Körbel, Matthias W. Laschke, Erol Tutdibi, Nasenien Nourkami-Tutdibi, Elisabeth Kaiser, Regine Weber, Michael Zemlin, Andreas R. Diewald","doi":"10.3390/bios14090437","DOIUrl":"https://doi.org/10.3390/bios14090437","url":null,"abstract":"(1) Objective: This study aims to lay a foundation for noncontact intensive care monitoring of premature babies. (2) Methods: Arterial oxygen saturation and heart rate were measured using a monochrome camera and time-division multiplex controlled lighting at three different wavelengths (660 nm, 810 nm and 940 nm) on a piglet model. (3) Results: Using this camera system and our newly designed algorithm for further analysis, the detection of a heartbeat and the calculation of oxygen saturation were evaluated. In motionless individuals, heartbeat and respiration were separated clearly during light breathing and with only minor intervention. In this case, the mean difference between noncontact and contact saturation measurements was 0.7% (RMSE = 3.8%, MAE = 2.93%). (4) Conclusions: The new sensor was proven effective under ideal animal experimental conditions. The results allow a systematic improvement for the further development of contactless vital sign monitoring systems. The results presented here are a major step towards the development of an incubator with noncontact sensor systems for use in the neonatal intensive care unit.","PeriodicalId":100185,"journal":{"name":"Biosensors","volume":"8 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}