{"title":"A Novel Personalized Strategy for Hip Joint Flexion Assistance Based on Human Physiological State","authors":"Beixian Wu, Chunjie Chen, Sheng Wang, Hui Chen, Zhuo Wang, Yao Liu, Tingwei He, Jiale Zhang, Xinyu Wu","doi":"10.3390/bios14090418","DOIUrl":"https://doi.org/10.3390/bios14090418","url":null,"abstract":"Soft exosuits have emerged as potent assistive tools for walking support and rehabilitation training. However, most existing soft exosuit systems rely on preset assistance modes, which may not accurately align with individual physiological states and movement requirements, leading to variable user experiences and efficacy. While existing human-in-the-loop (HIL) research predominantly focuses on optimizing metabolic cost and torque difference parameters, there is a notable absence of real-time monitoring methods that closely reflect the human body’s physiological state and strategies that dynamically indicate walking efficiency. Motivated by this, we developed a novel personalized power-assist system. This system optimizes the power-assist output of the hip joint by monitoring the user’s physiological and motion signals in real time, including heart rate (HR), blood oxygen saturation (SpO2), and inertial measurement unit (IMU) data, to assist hip flexion based on feedback. The findings from a metabolic expenditure trial demonstrate that the innovative soft exosuit, which is based on a Physiological State Monitoring Control (PSMC) system, achieves a reduction of 7.81% in metabolic expenditure during treadmill walking at a speed of 3.5 km/h compared to walking without the assistance of the exosuit. Additionally, during continuous exercise with varying intensities, the metabolic consumption level is reduced by 5.1%, 5.8%, and 8.2% at speeds of 2, 4, and 6 km per hour, respectively. These results support the design of a novel hip flexion-assisting soft exosuit, demonstrating that applying different assistance forces in consideration of different physiological states is a reasonable approach to reducing metabolic consumption.","PeriodicalId":100185,"journal":{"name":"Biosensors","volume":"25 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiosensorsPub Date : 2024-08-27DOI: 10.3390/bios14090417
Junzhu Yao, Kai Zhao, Jia Lou, Kaihuan Zhang
{"title":"Recent Advances in Dielectrophoretic Manipulation and Separation of Microparticles and Biological Cells","authors":"Junzhu Yao, Kai Zhao, Jia Lou, Kaihuan Zhang","doi":"10.3390/bios14090417","DOIUrl":"https://doi.org/10.3390/bios14090417","url":null,"abstract":"Dielectrophoresis (DEP) is an advanced microfluidic manipulation technique that is based on the interaction of polarized particles with the spatial gradient of a non-uniform electric field to achieve non-contact and highly selective manipulation of particles. In recent years, DEP has made remarkable progress in the field of microfluidics, and it has gradually transitioned from laboratory-scale research to high-throughput manipulation in practical applications. This paper reviews the recent advances in dielectric manipulation and separation of microparticles and biological cells and discusses in detail the design of chip structures for the two main methods, direct current dielectrophoresis (DC-DEP) and alternating current dielectrophoresis (AC-DEP). The working principles, technical implementation details, and other improved designs of electrode-based and insulator-based chips are summarized. Functional customization of DEP systems with specific capabilities, including separation, capture, purification, aggregation, and assembly of particles and cells, is then performed. The aim of this paper is to provide new ideas for the design of novel DEP micro/nano platforms with the desired high throughput for further development in practical applications.","PeriodicalId":100185,"journal":{"name":"Biosensors","volume":"65 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiosensorsPub Date : 2024-08-26DOI: 10.3390/bios14090413
Alexandra Deriabina, Tatiana Prutskij, Hector Daniel Morales Ochoa, Esteban Delgado Curiel, Veranda Palacios Corte
{"title":"Comparative Study of Fluorescence Emission of Fisetin, Luteolin and Quercetin Powders and Solutions: Further Evidence of the ESIPT Process","authors":"Alexandra Deriabina, Tatiana Prutskij, Hector Daniel Morales Ochoa, Esteban Delgado Curiel, Veranda Palacios Corte","doi":"10.3390/bios14090413","DOIUrl":"https://doi.org/10.3390/bios14090413","url":null,"abstract":"Fisetin and Luteolin are important flavonoids produced in plants and known for their antioxidant, anti-inflammatory, neuroprotective, and analgesic properties. They are also good candidates for different types of biosensors. The model used to describe the fluorescence (FL) emission of these flavonoids involves an excited-state intermolecular proton transfer (ESIPT) process that causes a change in the molecule configuration and a corresponding decrease in the emission energy. Due to the different molecular structures of Fisetin and Luteolin, only one possible proton transfer within the molecule is allowed for each of them: transfer of the H3 proton for Fisetin and of the H5 for Luteolin. Here, we compare their calculated emission wavelengths, obtained using TDDFT/M06-2X/6-31++G(d,p), with their FL emission spectra measured on the corresponding powders and solutions and show that the experimental data are consistent with the presence of the ESIPT process. We also compare the emission wavelengths found for Fisetin and Luteolin with those calculated and measured for Quercetin, where, under photoexcitation, the transfers of both H3 and H5 protons are possible. We analyze the difference in the processes associated with the H3 and H5 proton transfers and discuss the reason for the predominance of the H5 proton transfer in Quercetin. Additionally, a new system of notation for flavonoid molecules is developed.","PeriodicalId":100185,"journal":{"name":"Biosensors","volume":"27 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Microscale Humidity Sensor Based on Iron-Coated Elaters of Equisetum Spores","authors":"Yanting Liu, Zhexuan Lin, Xiaochun Li, Rui Huang, Xuewan Wu, Ruyi Deng, Kaisong Yuan","doi":"10.3390/bios14090414","DOIUrl":"https://doi.org/10.3390/bios14090414","url":null,"abstract":"Humidity sensors deeply influence human manufacturing production and daily life, while researchers generally focus on developing humidity sensors with higher stability, higher linearity, rapid response time, etc. Yet, few people discuss measuring humidity in the microenvironment by miniaturizing sensor size into a microscale, in which the existing humidity sensors are difficult to reach. Accordingly, this study proposes a methodology for measuring relative humidity in the microscale by utilizing the distinctive morphologies of Equisetum spores across a range of relative humidities between 50% and 90%. Equisetum spores are responsive to changes in ambient relative humidity and remain in their original activities even after iron sputtering, which aims to endow the sensor with magnetic properties. The test performed in this study demonstrated a response time of 3.3 s and a recovery time of 3.6 s. In the first application, we employed such microscale sensors to work in the channel of the microfluidic chip or the cell migration microchip, as an example of working in the microenvironment. COMSOL Multiphysics 6.2 software was also used to simulate the change in relative humidity in such microchannels. Secondly, such microscale sensors are combined with smartphone-based microscopy to measure the humidity of the skin. These microscale sensors pave the new way to sensing humidity in microenvironments.","PeriodicalId":100185,"journal":{"name":"Biosensors","volume":"159 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiosensorsPub Date : 2024-08-24DOI: 10.3390/bios14090412
Sanjeev Billa, Rohit Boddu, Shabnam Siddiqui, Prabhu U. Arumugam
{"title":"Enhancing Heavy Metal Detection through Electrochemical Polishing of Carbon Electrodes","authors":"Sanjeev Billa, Rohit Boddu, Shabnam Siddiqui, Prabhu U. Arumugam","doi":"10.3390/bios14090412","DOIUrl":"https://doi.org/10.3390/bios14090412","url":null,"abstract":"Our research addresses the pressing need for environmental sensors capable of large-scale, on-site detection of a wide array of heavy metals with highly accurate sensor metrics. We present a novel approach using electrochemically polished (ECP) carbon screen-printed electrodes (cSPEs) for high-sensitivity detection of cadmium and lead. By applying a range of techniques, including scanning electron microscopy, energy-dispersive spectroscopy, Raman spectroscopy, electrochemical impedance spectroscopy, and cyclic voltammetry, we investigated the impact of the electrochemical potential scan range, scan rate, and the number of cycles on electrode response and its ability to detect cadmium and lead. Our findings reveal a 41 ± 1.2% increase in voltammogram currents and a 51 ± 1.6% decrease in potential separations (n = 3), indicating a significantly improved active electrode area and kinetics. The impedance model elucidates the microstructural and electrochemical property changes in the ECP-treated electrodes, showing an 88 ± 2% (n = 3) decrease in the charge transfer resistance, leading to enhanced electrode electrical conductivity. A bismuth-reduced graphene oxide nanocomposite-modified, ECP-treated electrode demonstrated a higher cadmium and lead sensitivity of up to 5 ± 0.1 μAppb−1cm−2 and 2.7 ± 0.1 μAppb−1cm−2 (n = 3), respectively, resulting in sub-ppb limits of detection in spiked deionized water samples. Our study underscores the potential of optimally ECP-activated electrodes as a foundation for designing ultrasensitive heavy metal sensors for a wide range of real-world heavy metal-contaminated waters.","PeriodicalId":100185,"journal":{"name":"Biosensors","volume":"9 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Core–Shell PEDOT-PVDF Nanofiber-Based Ammonia Gas Sensor with Robust Humidity Resistance","authors":"Shenghao Xiao, Mengjie Hu, Yinhui Hong, Mengjia Hu, Tongtong Sun, Dajing Chen","doi":"10.3390/bios14090411","DOIUrl":"https://doi.org/10.3390/bios14090411","url":null,"abstract":"Current ammonia sensors exhibit cross-sensitivity to water vapor, leading to false alarms. We developed a core–shell nanofiber (CSNF) structure to address these issues, using conductive poly(3,4-ethylenedioxythiophene) (PEDOT) as the core and hydrophobic polyvinylidene fluoride-tetrafluoroethylene (PVDF-TrFE) as the shell. The PEDOT-PVDF CSNF, with a diameter of ~500 nm and a 300 nm thick PVDF layer, showed a superior sensitivity and humidity resistance compared to conventional PEDOT membranes for ammonia concentrations of 10–100 ppm. In humid environments, CSNF sensors outperformed membrane sensors, exhibiting a tenfold increase in performance at 51% relative humidity (RH). This study highlights the potential of CSNF sensors for practical ammonia detection, maintaining a high performance under varying humidity levels.","PeriodicalId":100185,"journal":{"name":"Biosensors","volume":"18 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiosensorsPub Date : 2024-08-23DOI: 10.3390/bios14090410
Xuan Le, Jianxiong Chan, James McMahon, Jessica A. Wisniewski, Anna Coldham, Tuncay Alan, Patrick Kwan
{"title":"A Finger-Actuated Sample-Dosing Capillary-Driven Microfluidic Device for Loop-Mediated Isothermal Amplification","authors":"Xuan Le, Jianxiong Chan, James McMahon, Jessica A. Wisniewski, Anna Coldham, Tuncay Alan, Patrick Kwan","doi":"10.3390/bios14090410","DOIUrl":"https://doi.org/10.3390/bios14090410","url":null,"abstract":"Loop-mediated isothermal amplification (LAMP) has attracted significant attention for rapid and accurate point-of-care diagnostics. However, integrating sample introduction, lysis, amplification, and detection steps into an easy-to-use, disposable system has so far been challenging. This has limited the uptake of the technique in practical applications. In this study, we developed a colourimetric one-step LAMP assay that combines thermolysis and LAMP reaction, to detect the SARS-CoV-2 virus in nasopharyngeal swab samples from COVID-19-infected individuals. The limit of detection was 500 copies per reaction at 65 °C for 25 min in reaction tubes. Additionally, we developed a finger-operated capillary-driven microfluidic device with selective PVA coating. This finger-actuated microfluidic device could self-dose the required sample amount for the LAMP reaction and inhibit sample evaporation. Finally, we integrated the LAMP assay into the microfluidic device by short-term pre-storage of the LAMP master mix. Using this device, nasopharyngeal swab samples from COVID-19-infected individuals showed positive results at a reaction time of 35 min at 65 °C. This integrated device may be adapted to detect other RNA viruses of interest rapidly.","PeriodicalId":100185,"journal":{"name":"Biosensors","volume":"50 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiosensorsPub Date : 2024-08-23DOI: 10.3390/bios14090408
Tianhao Li, Chen Yang, Zihao Shao, Ya Chen, Jiahui Zheng, Jun Yang, Ning Hu
{"title":"Fabrication of Patterned Magnetic Particles in Microchannels and Their Application in Micromixers","authors":"Tianhao Li, Chen Yang, Zihao Shao, Ya Chen, Jiahui Zheng, Jun Yang, Ning Hu","doi":"10.3390/bios14090408","DOIUrl":"https://doi.org/10.3390/bios14090408","url":null,"abstract":"Due to the extremely low Reynolds number, the mixing of substances in laminar flow within microfluidic channels primarily relies on slow intermolecular diffusion, whereas various rapid reaction and detection requirements in lab-on-a-chip applications often necessitate the efficient mixing of fluids within short distances. This paper presents a magnetic pillar-shaped particle fabrication device capable of producing particles with planar shapes, which are then utilized to achieve the rapid mixing of multiple fluids within microchannels. During the particle fabrication process, a degassed PDMS chip provides self-priming capabilities, drawing in a UV-curable adhesive-containing magnetic powder and distributing it into distinct microwell structures. Subsequently, an external magnetic field is applied, and the chip is exposed to UV light, enabling the mass production of particles with specific magnetic properties through photo-curing. Without the need for external pumping, this chip-based device can fabricate hundreds of magnetic particles in less than 10 min. In contrast to most particle fabrication methods, the degassed PDMS approach enables self-priming and precise dispensing, allowing for precise control over particle shape and size. The fabricated dual-layer magnetic particles, featuring fan-shaped blades and disk-like structures, are placed within micromixing channels. By manipulating the magnetic field, the particles are driven into motion, altering the flow patterns to achieve fluid mixing. Under conditions where the Reynolds number in the chip ranges from 0.1 to 0.9, the mixing index for substances in aqueous solutions exceeds 0.9. In addition, experimental analyses of mixing efficiency for fluids with different viscosities, including 25 wt% and 50 wt% glycerol, reveal mixing indices exceeding 0.85, demonstrating the broad applicability of micromixers based on the rapid rotation of magnetic particles.","PeriodicalId":100185,"journal":{"name":"Biosensors","volume":"23 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiosensorsPub Date : 2024-08-23DOI: 10.3390/bios14090409
Xining Chen, Mark P. Andrews
{"title":"Polarized and Evanescent Guided Wave Surface-Enhanced Raman Spectroscopy of Ligand Interactions on a Plasmonic Nanoparticle Optical Chemical Bench","authors":"Xining Chen, Mark P. Andrews","doi":"10.3390/bios14090409","DOIUrl":"https://doi.org/10.3390/bios14090409","url":null,"abstract":"This study examined applications of polarized evanescent guided wave surface-enhanced Raman spectroscopy to determine the binding and orientation of small molecules and ligand-modified nanoparticles, and the relevance of this technique to lab-on-a-chip, surface plasmon polariton and other types of field enhancement techniques relevant to Raman biosensing. A simplified tutorial on guided-wave Raman spectroscopy is provided that introduces the notion of plasmonic nanoparticle field enhancements to magnify the otherwise weak TE- and TM-polarized evanescent fields for Raman scattering on a simple plasmonic nanoparticle slab waveguide substrate. The waveguide construct is called an optical chemical bench (OCB) to emphasize its adaptability to different kinds of surface chemistries that can be envisaged to prepare optical biosensors. The OCB forms a complete spectroscopy platform when integrated into a custom-built Raman spectrograph. Plasmonic enhancement of the evanescent field is achieved by attaching porous carpets of Au@Ag core shell nanoparticles to the surface of a multi-mode glass waveguide substrate. We calibrated the OCB by establishing the dependence of SER spectra of adsorbed 4-mercaptopyridine and 4-aminobenzoic acid on the TE/TM polarization state of the evanescent field. We contrasted the OCB construct with more elaborate photonic chip devices that also benefit from enhanced evanescent fields, but without the use of plasmonics. We assemble hierarchies of matter to show that the OCB can resolve the binding of Fe2+ ions from water at the nanoscale interface of the OCB by following the changes in the SER spectra of 4MPy as it coordinates the cation. A brief introduction to magnetoplasmonics sets the stage for a study that resolves the 4ABA ligand interface between guest magnetite nanoparticles adsorbed onto host plasmonic Au@Ag nanoparticles bound to the OCB. In some cases, the evanescent wave TM polarization was strongly attenuated, most likely due to damping by inertial charge carriers that favor optical loss for this polarization state in the presence of dense assemblies of plasmonic nanoparticles. The OCB offers an approach that provides vibrational and orientational information for (bio)sensing at interfaces that may supplement the information content of evanescent wave methods that rely on perturbations in the refractive index in the region of the evanescent wave.","PeriodicalId":100185,"journal":{"name":"Biosensors","volume":"17 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiosensorsPub Date : 2024-08-12DOI: 10.3390/bios14080389
Muting Wang, Stella W. Pang
{"title":"Detecting Nanotopography Induced Changes in Cell Migration Directions Using Oxygen Sensors","authors":"Muting Wang, Stella W. Pang","doi":"10.3390/bios14080389","DOIUrl":"https://doi.org/10.3390/bios14080389","url":null,"abstract":"This study investigates the oxygen (O2) consumption of single cells during changes in their migration direction. This is the first integration of nanotopographies with an O2 biosensor in a platform, allowing the real-time monitoring of O2 consumption in cells and the ability to distinguish cells migrating in the same direction from those migrating in the opposite direction. Advanced nanofabrication technologies were used to pattern nanoholes or nanopillars on grating ridges, and their effects were evaluated using fluorescence microscopy, cell migration assays, and O2 consumption analysis. The results revealed that cells on the nanopillars over grating ridges exhibited an enhanced migration motility and more frequent directional changes. Additionally, these cells showed an increased number of protrusions and filopodia with denser F-actin areas and an increased number of dotted F-actin structures around the nanopillars. Dynamic metabolic responses were also evident, as indicated by the fluorescence intensity peaks of platinum octaethylporphyrin ketone dye, reflecting an increased O2 consumption and higher mitochondria activities, due to the higher energy required in response to directional changes. The study emphasizes the complex interplay between O2 consumption and cell migration directional changes, providing insights into biomaterial science and regenerative medicine. It suggests innovative designs for biomaterials that guide cell migration and metabolism, advocating nanoengineered platforms to harness the intricate relationships between cells and their microenvironments for therapeutic applications.","PeriodicalId":100185,"journal":{"name":"Biosensors","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141969109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}