Advanced Sensor Research最新文献

筛选
英文 中文
A Flexible, Wearable, Humidity-Resistant and Self-Powered Sensor Fabricated by Chitosan-Critic Acid Film and its Applications in Human Motion Monitoring and Energy Harvesting (Adv. Sensor Res. 4/2024) 由壳聚糖-硬脂酸薄膜制成的柔性、可穿戴、防潮和自供电传感器及其在人体运动监测和能量收集中的应用(传感器研究进展 4/2024)
Advanced Sensor Research Pub Date : 2024-04-11 DOI: 10.1002/adsr.202470012
Xing Zhang, Yanran Ma, Yongfa Wang, Li Li, Peihong Wang, Chunchang Wang
{"title":"A Flexible, Wearable, Humidity-Resistant and Self-Powered Sensor Fabricated by Chitosan-Critic Acid Film and its Applications in Human Motion Monitoring and Energy Harvesting (Adv. Sensor Res. 4/2024)","authors":"Xing Zhang,&nbsp;Yanran Ma,&nbsp;Yongfa Wang,&nbsp;Li Li,&nbsp;Peihong Wang,&nbsp;Chunchang Wang","doi":"10.1002/adsr.202470012","DOIUrl":"https://doi.org/10.1002/adsr.202470012","url":null,"abstract":"<p><b>Triboelectric Nanogenerator</b></p><p>In article 2300129, Peihong Wang, Chunchang Wang, and co-workers show that the addition of citric and glycerol enhances water resistance, improves the softness of the chitosan-based film, results in low electronegativity and higher triboelectricity of chitosan-based film. Self-powered tactile sensor based on the TENG exhibits sensitive response to pressure and bending as well as humidity resistance, giving the sensor tremendous promise for a wide range of human motion monitoring and energy harvesting.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202470012","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140544554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analyzing Electrochemical Sensing Fundamentals for Health Applications (Adv. Sensor Res. 4/2024) 分析用于健康应用的电化学传感基本原理(传感器研究进展 4/2024)
Advanced Sensor Research Pub Date : 2024-04-11 DOI: 10.1002/adsr.202470015
Maksud M. Alam, Victor Mitea, Matiar M. R. Howlader, Ponnambalam Ravi Selvaganapathy, M. Jamal Deen
{"title":"Analyzing Electrochemical Sensing Fundamentals for Health Applications (Adv. Sensor Res. 4/2024)","authors":"Maksud M. Alam,&nbsp;Victor Mitea,&nbsp;Matiar M. R. Howlader,&nbsp;Ponnambalam Ravi Selvaganapathy,&nbsp;M. Jamal Deen","doi":"10.1002/adsr.202470015","DOIUrl":"https://doi.org/10.1002/adsr.202470015","url":null,"abstract":"<p><b>Electrochemical Biosensing</b></p><p>Electrochemical biosensing is a rapidly growing field within global healthcare research. In article 2300100, Matiar M. R. Howlader and co-workers provide a comprehensive review of the underlying principles and technological advancements in electrochemical sensing for health monitoring applications.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202470015","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140544553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep Learning-Assisted Sensitive 3C-SiC Sensor for Long-Term Monitoring of Physical Respiration 深度学习辅助灵敏 3C-SiC 传感器用于长期监测生理呼吸
Advanced Sensor Research Pub Date : 2024-04-05 DOI: 10.1002/adsr.202300159
Thi Lap Tran, Duy Van Nguyen, Hung Nguyen, Thi Phuoc Van Nguyen, Pingan Song, Ravinesh C Deo, Clint Moloney, Viet Dung Dao, Nam-Trung Nguyen, Toan Dinh
{"title":"Deep Learning-Assisted Sensitive 3C-SiC Sensor for Long-Term Monitoring of Physical Respiration","authors":"Thi Lap Tran,&nbsp;Duy Van Nguyen,&nbsp;Hung Nguyen,&nbsp;Thi Phuoc Van Nguyen,&nbsp;Pingan Song,&nbsp;Ravinesh C Deo,&nbsp;Clint Moloney,&nbsp;Viet Dung Dao,&nbsp;Nam-Trung Nguyen,&nbsp;Toan Dinh","doi":"10.1002/adsr.202300159","DOIUrl":"10.1002/adsr.202300159","url":null,"abstract":"<p>In human life, respiration serves as a crucial physiological signal. Continuous real-time respiration monitoring can provide valuable insights for the early detection and management of several respiratory diseases. High-sensitivity, noninvasive, comfortable, and long-term stable respiration devices are highly desirable. In spite of this, existing respiration sensors cannot provide continuous long-term monitoring due to the erosion from moisture, fluctuations in body temperature, and many other environmental factors. This research developed a wearable thermal-based respiration sensor made of cubic silicon carbide (3C-SiC) using a microfabrication process. The results showed that as a result of the Joule heating effect in the robustness 3C-SiC material, the sensor offered high sensitivity with the negative temperature coefficient of resistance of approximately 5,200ppmK<sup>-1</sup>, an excellent response to respiration and long-term stability monitoring. Furthermore, by incorporating a deep learning model, this fabricated sensor can develop advanced capabilities to distinguish between the four distinct breath patterns: slow, normal, fast, and deep breathing, and provide an impressive classification accuracy rate of ≈ 99.7%. The results of this research represent a significant step in developing wearable respiration sensors for personal healthcare systems.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202300159","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140739706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of Kirigami-Patterned Stretchable Tactile Sensor Array with Soft Hinges for Highly Sensitive Force Detection 开发带有软铰链的桐木图案可伸缩触觉传感器阵列,实现高灵敏度力检测
Advanced Sensor Research Pub Date : 2024-04-03 DOI: 10.1002/adsr.202400012
Chenhao Mao, Jie Jin, Deqing Mei, Yancheng Wang
{"title":"Development of Kirigami-Patterned Stretchable Tactile Sensor Array with Soft Hinges for Highly Sensitive Force Detection","authors":"Chenhao Mao,&nbsp;Jie Jin,&nbsp;Deqing Mei,&nbsp;Yancheng Wang","doi":"10.1002/adsr.202400012","DOIUrl":"10.1002/adsr.202400012","url":null,"abstract":"<p>Flexible and stretchable tactile sensors are attracted in the fields of soft robotics, wearable electronics, and healthcare monitoring. The sensing performance of tactile sensors is commonly affected by external deformations like stretching, bending, and twisting, thus they may fail to function on deformable object surfaces. This paper presents a stretchable tactile sensor array using kirigami-patterned structural design and soft hinges to reduce the influences of deformation. The kirigami pattern of sensor array is parametrically studied to achieve the required expansion patterns. Laser engraving is employed to modify the micropillars on the force-sensitive rubber surface to increase the sensitivity. Characterization tests show that the sensor array has high sensitivity (≈1.49 × 10<sup>−1</sup> kPa<sup>−1</sup>) for force sensing, and the stretching and bending deformation have almost negligible effects on sensing performance. Under 40% stretching or 180° bending conditions, the measured resistance changes (Δ<i>R</i>/<i>R</i><sub>0</sub>) is ≈0.03 and 0.06, respectively. To demonstrate the capability of developed sensor array, it is mounted on an expandable balloon surface for force detection. The recorded signals changed less than 1.5% during expanding process while rapidly rose under applied force, which indicated that the sensor array has the potential to effectively function on complex and deforming surfaces.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202400012","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140747208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rapid Isolation and Detection of Breast Cancer Circulating Tumor Cells Using Microfluidic Sequential Trapping Array 利用微流体序贯捕获阵列快速分离和检测乳腺癌循环肿瘤细胞
Advanced Sensor Research Pub Date : 2024-04-03 DOI: 10.1002/adsr.202300206
Amin Hassanzadeh-Barforoushi, Simon Chang-Hao Tsao, Audrey Nadalini, David W. Inglis, Yuling Wang
{"title":"Rapid Isolation and Detection of Breast Cancer Circulating Tumor Cells Using Microfluidic Sequential Trapping Array","authors":"Amin Hassanzadeh-Barforoushi,&nbsp;Simon Chang-Hao Tsao,&nbsp;Audrey Nadalini,&nbsp;David W. Inglis,&nbsp;Yuling Wang","doi":"10.1002/adsr.202300206","DOIUrl":"10.1002/adsr.202300206","url":null,"abstract":"<p>Circulating tumor cells (CTCs) have garnered special attention as promising cancer biomarkers. Phenotypic changes of CTCs reveal invaluable information for oncologists in disease prognosis and adjusting their treatment options. Microfluidic technology has emerged as a promising tool for CTC isolation; however, two major hurdles remain to be solved in employing them in CTC analysis. First, a rapid CTC isolation scheme is needed to allow immediate use of patient samples for point-of-care treatment monitoring. Second, multiplexed and streamlined CTC imaging is needed to facilitate CTC detection. Here, a microfluidic CTC sequential trapping array (STA) is proposed which addresses these hurdles enabling pipette-based CTC isolation and simultaneous profiling of multiple CTC protein expressions. The STA device isolates CTCs based on their size difference from blood cells and increases sample processing throughput through its parallel design configuration. It successfully isolates CTC from a depleted peripheral blood mononuclear cells sample of breast cancer patients with a high recovery rate of 80% and discriminates the number and types of CTCs in breast cancer based on their disease stage. These findings will open a new avenue in clinical translation of CTC profiling technologies. It will be an example for future translational developments in CTC-based cancer management.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202300206","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140746771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Printed 1d Perovskite Photodetector for Indoor/Outdoor Non-Contact and Real-Time Sports Training Monitoring 用于室内/室外非接触式实时体育训练监测的 1d Perovskite 印刷光电探测器
Advanced Sensor Research Pub Date : 2024-04-01 DOI: 10.1002/adsr.202300158
Jiabing Zhang, Hongfei Xie, Yuming Hu, Wei Sun, Mengfei Lv, Teng Han, Xiaolin Tian, Shuang Wang, Meng Su
{"title":"Printed 1d Perovskite Photodetector for Indoor/Outdoor Non-Contact and Real-Time Sports Training Monitoring","authors":"Jiabing Zhang,&nbsp;Hongfei Xie,&nbsp;Yuming Hu,&nbsp;Wei Sun,&nbsp;Mengfei Lv,&nbsp;Teng Han,&nbsp;Xiaolin Tian,&nbsp;Shuang Wang,&nbsp;Meng Su","doi":"10.1002/adsr.202300158","DOIUrl":"10.1002/adsr.202300158","url":null,"abstract":"<p>As people increased emphasis on health problems, various wearable electronic devices are developed for sport-related activity monitoring. However, these reported sensors must be tightly attached on the body to record the photonic, electronic even chemical changes during exercise. Poor user experience hinders the rapid application of wearable sensors. Here, an all-printed perovskite photodetector for achieving non-contact sports motion monitoring is developed. 1D MAPbBr<sub>3</sub> arrays are printed with uniform orientation and strict crystallization via the droplet-manipulation printing strategy. Under the guidance of microarrays on the template, the perovskite-loaded droplet can be self-shaped into the linear confined liquid space for the next crystallization. 1D perovskite photodetectors with high responsivity (<i>R</i>, MAX: 198 A W<sup>−1</sup>) and detectivity (<i>D</i><sup>*</sup>, MAX: 6.64 × 10<sup>13</sup> Jones) can be utilized to detect changes in the ambient light intensity under the body during the push-up movement, achieving non-contact real-time monitoring of motions. The average accuracy of printed photodetectors to classify the collected push-up signals reaches 97.40%. This strategy provides a reference for further improving the sensing performance of wearable sensors, which also extends the application of sports monitoring.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202300158","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140789220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to “External Measurement of Swallowed Volume During Exercise Enabled by Stretchable Derivatives of PEDOT:PSS, Graphene, Metallic Nanoparticles, and Machine Learning” 对 "利用 PEDOT:PSS、石墨烯、金属纳米颗粒的可拉伸衍生物和机器学习对运动过程中的吞咽量进行外部测量 "的更正
Advanced Sensor Research Pub Date : 2024-03-25 DOI: 10.1002/adsr.202400017
B. Polat, T. Rafeedi, L. Becerra, A. X. Chen, K. Chiang, V. Kaipu, R. Blau, P. P. Mercier, C.-K. Cheng, D. J. Lipomi*
{"title":"Correction to “External Measurement of Swallowed Volume During Exercise Enabled by Stretchable Derivatives of PEDOT:PSS, Graphene, Metallic Nanoparticles, and Machine Learning”","authors":"B. Polat,&nbsp;T. Rafeedi,&nbsp;L. Becerra,&nbsp;A. X. Chen,&nbsp;K. Chiang,&nbsp;V. Kaipu,&nbsp;R. Blau,&nbsp;P. P. Mercier,&nbsp;C.-K. Cheng,&nbsp;D. J. Lipomi*","doi":"10.1002/adsr.202400017","DOIUrl":"10.1002/adsr.202400017","url":null,"abstract":"<p><i>Adv. Sensor Res</i>. <b>2023</b>, <i>2</i>, 2200060</p><p>In the section “Acknowledgments”, we would like to add the sentence “R.B. acknowledges that this project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie Grant Agreement No 898571”. This sentence should be added after the sentence “L.B. acknowledges the support provided by the National Science Foundation Graduate Research Fellowship Program under Grant DGE-2038238.”</p><p><i>The error was that there is a missing sentence acknowledging a funding source for the author R.B in the manuscript. The correction involves adding the requested sentence, and acknowledging the funding source for author R.B</i>.</p><p>We apologize for this error. This sentence was not added by mistake. Thank you so much for your consideration.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202400017","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140383147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent Advances and Synthetic Approaches of AuNRs for Sensing Applications Based on Different Aspect Ratios 基于不同长宽比的传感应用 AuNRs 的最新进展和合成方法
Advanced Sensor Research Pub Date : 2024-03-20 DOI: 10.1002/adsr.202300192
Xi Hao, Jieling Qin
{"title":"Recent Advances and Synthetic Approaches of AuNRs for Sensing Applications Based on Different Aspect Ratios","authors":"Xi Hao,&nbsp;Jieling Qin","doi":"10.1002/adsr.202300192","DOIUrl":"10.1002/adsr.202300192","url":null,"abstract":"<p>Gold nanorods (AuNRs), 1D rod-shaped nanomaterials, hold a crucial role in sensing applications due to their distinct physicochemical properties, such as high surface area, efficient mass transfer, good biocompatibility, and anisotropic optical and electronic responses. This review outlines the most recent advancements in AuNRs research, offering a comprehensive summary of synthetic strategies. Subsequently, the potential of AuNRs in sensor applications is discussed, and for the first time, an innovative analysis of their application in the sensor field based on the aspect ratio of AuNRs is proposed. These sensing systems are utilized for detecting heavy metal ions, inorganic anions, small biomolecules, protein tumor markers, enzymes, and nucleic acids. Finally, the future research directions and challenges of AuNRs are addressed.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202300192","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140224059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Direct Fabrication of Electronic Circuits on Wooden Surfaces 在木质表面直接制作电子电路
Advanced Sensor Research Pub Date : 2024-03-15 DOI: 10.1002/adsr.202400010
Florian Egger, David Schiller, Thomas Stockinger, Claudia Pretschuh, Uwe Müller, Martin Kaltenbrunner
{"title":"Direct Fabrication of Electronic Circuits on Wooden Surfaces","authors":"Florian Egger,&nbsp;David Schiller,&nbsp;Thomas Stockinger,&nbsp;Claudia Pretschuh,&nbsp;Uwe Müller,&nbsp;Martin Kaltenbrunner","doi":"10.1002/adsr.202400010","DOIUrl":"10.1002/adsr.202400010","url":null,"abstract":"<p>Equipping otherwise passive surfaces with electronic functionality enables advanced interactive robotics, consumer products, sensor skins, and structural health monitoring. Concurrently, the rapidly growing number of electronic devices fuels the search for sustainable materials and processes that aid in reducing electronic waste. Wood is CO<sub>2</sub>-neutral, omnipresent in the construction industry, in furniture, musical instruments, or packaging, yet so far, its potential for direct integration with electronics remains largely unexplored. Complications arise as traditional methods of equipping wood with electronics often compromise structural integrity and thus limit applications requiring load-bearing capabilities. Here, seamless fabrication methods that allow the direct enhancement of wooden surfaces with electrically conducting structures, sensors, and microelectronic components based on screen printing of conducting inks or physical vapor deposition of thin metal films in conjunction with laser engraving are presented. Such electronic circuits imperceptibly operate on the surface of structural elements or as parts of decorative wooden furniture. These types of electronic wooden surfaces enable touch-sensing applications, monitoring temperature, or the curing of varnishes without compromising functionality and mechanical stability. This multidisciplinary approach opens up new avenues for the development of smart wooden structures with embedded electronics, revolutionizing the way it is monitored, controlled, and interacted with wood-based constructions.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202400010","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140240505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cancer-on-Chip and Integrative Tumor Microenvironment Sensor Technologies for Progressing Precision Radiotherapy 芯片癌症和综合肿瘤微环境传感器技术促进精准放疗的发展
Advanced Sensor Research Pub Date : 2024-03-15 DOI: 10.1002/adsr.202300193
Shuvashis Dey, Masaki Kinoshita, Simon Puttick, Stephen Rose, Matt Trau, Matthew J. Roberts, Kevin M. Koo
{"title":"Cancer-on-Chip and Integrative Tumor Microenvironment Sensor Technologies for Progressing Precision Radiotherapy","authors":"Shuvashis Dey,&nbsp;Masaki Kinoshita,&nbsp;Simon Puttick,&nbsp;Stephen Rose,&nbsp;Matt Trau,&nbsp;Matthew J. Roberts,&nbsp;Kevin M. Koo","doi":"10.1002/adsr.202300193","DOIUrl":"10.1002/adsr.202300193","url":null,"abstract":"<p>Precision radiotherapy, such as targeted radioligand therapy, accentuates the precise delivery of radiation to tumor cells while limiting radiation damage to surrounding normal cells. Although recent clinical trial data has shown targeted radioligand therapy to have significant patient survival benefit, it is still unavoidable that the cancer cells will eventually adapt and develop radioresistance. Thus, the study of radiotherapy-induced changes in the tumor microenvironment (TME) is crucial for developing strategies to best overcome radioresistance. To this end, organ-on-chip (OOC) systems with integrative sensors represent cutting-edge pre-clinical models for miniaturized 3D modelling and profiling of the TME. This Review features OOC systems which have demonstrated feasibility for radiation-associated studies, as well as showcased the progress of different OOC systems for profiling core components of the TME. Furthermore, this Review discusses the knowledge gap in cancer-on-chip systems with integrative TME sensors for precision radiotherapy applications. It is anticipated that this Review can kickstart the propagation of new concepts and approaches to drive a new era of miniaturized sensors on OOC systems for precision radiotherapy.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202300193","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140238985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信