具有成本效益的分层钴纳米结构激光诱导石墨烯增强尿酸检测

Anju Joshi, Gymama Slaughter
{"title":"具有成本效益的分层钴纳米结构激光诱导石墨烯增强尿酸检测","authors":"Anju Joshi,&nbsp;Gymama Slaughter","doi":"10.1002/adsr.70003","DOIUrl":null,"url":null,"abstract":"<p>This study presents an innovative, cost-effective strategy to develop a flexible, enzyme-free biosensor for the sensitive detection of uric acid (UA). Utilizing electrochemically modified cobalt nanostructured on laser-induced graphene electrodes (CoNCs/LIG), this approach surpasses traditional noble metal-based electrocatalysts in sensitivity and affordability. The one-step electrochemical modification method is efficient and straightforward, enabling the uniform deposition of hierarchical flower-like cobalt nanostructures. These structures synergistically enhance the performance of the LIG, resulting in a broad detection range of 5 to 700 µM with a sensitivity of 6.75 µA µM<sup>−1</sup> cm<sup>−2</sup> and a low detection limit of 3.66 µM for UA. The morphology and elemental composition of the CoNCs/LIG electrodes are characterized using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). Beyond sensitivity, the sensor exhibited excellent selectivity, reliably resisting interference from competing biologically species such as ascorbic acid, dopamine, glycine, and glucose. Clinical utility is demonstrated in serum and artificial urine samples, achieving recovery rates ranging from (102.47%–104.46%). This work highlights the exceptional electrocatalytic efficiency of CoNCs/LIG-based flexible biosensors, offering a highly sensitive, selective, and cost-effective platform for UA detection, with promising applications in clinical diagnostics and health monitoring.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":"4 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.70003","citationCount":"0","resultStr":"{\"title\":\"Cost-Effective Hierarchical Cobalt Nanostructured Laser-Induced Graphene for Enhanced Uric Acid Detection\",\"authors\":\"Anju Joshi,&nbsp;Gymama Slaughter\",\"doi\":\"10.1002/adsr.70003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study presents an innovative, cost-effective strategy to develop a flexible, enzyme-free biosensor for the sensitive detection of uric acid (UA). Utilizing electrochemically modified cobalt nanostructured on laser-induced graphene electrodes (CoNCs/LIG), this approach surpasses traditional noble metal-based electrocatalysts in sensitivity and affordability. The one-step electrochemical modification method is efficient and straightforward, enabling the uniform deposition of hierarchical flower-like cobalt nanostructures. These structures synergistically enhance the performance of the LIG, resulting in a broad detection range of 5 to 700 µM with a sensitivity of 6.75 µA µM<sup>−1</sup> cm<sup>−2</sup> and a low detection limit of 3.66 µM for UA. The morphology and elemental composition of the CoNCs/LIG electrodes are characterized using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). Beyond sensitivity, the sensor exhibited excellent selectivity, reliably resisting interference from competing biologically species such as ascorbic acid, dopamine, glycine, and glucose. Clinical utility is demonstrated in serum and artificial urine samples, achieving recovery rates ranging from (102.47%–104.46%). This work highlights the exceptional electrocatalytic efficiency of CoNCs/LIG-based flexible biosensors, offering a highly sensitive, selective, and cost-effective platform for UA detection, with promising applications in clinical diagnostics and health monitoring.</p>\",\"PeriodicalId\":100037,\"journal\":{\"name\":\"Advanced Sensor Research\",\"volume\":\"4 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.70003\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Sensor Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adsr.70003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sensor Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adsr.70003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种创新的、具有成本效益的策略来开发一种灵活的、无酶的生物传感器,用于尿酸(UA)的敏感检测。该方法利用激光诱导石墨烯电极(CoNCs/LIG)上的电化学修饰钴纳米结构,在灵敏度和价格上优于传统的贵金属基电催化剂。一步电化学修饰方法是高效和直接的,可以实现分层花状钴纳米结构的均匀沉积。这些结构协同增强了LIG的性能,从而实现了5至700µM的宽检测范围,灵敏度为6.75µaµM−1 cm−2,UA的检测限低至3.66µM。利用扫描电子显微镜(SEM)和能量色散x射线能谱(EDS)对CoNCs/LIG电极的形貌和元素组成进行了表征。除了灵敏度之外,该传感器还表现出优异的选择性,可靠地抵抗来自抗坏血酸、多巴胺、甘氨酸和葡萄糖等竞争生物物种的干扰。该方法在血清和人工尿液样本中具有临床应用价值,回收率为102.47%-104.46%。这项工作突出了基于CoNCs/ ligs的柔性生物传感器的卓越电催化效率,为UA检测提供了一个高度敏感、选择性高、成本效益高的平台,在临床诊断和健康监测方面具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Cost-Effective Hierarchical Cobalt Nanostructured Laser-Induced Graphene for Enhanced Uric Acid Detection

Cost-Effective Hierarchical Cobalt Nanostructured Laser-Induced Graphene for Enhanced Uric Acid Detection

This study presents an innovative, cost-effective strategy to develop a flexible, enzyme-free biosensor for the sensitive detection of uric acid (UA). Utilizing electrochemically modified cobalt nanostructured on laser-induced graphene electrodes (CoNCs/LIG), this approach surpasses traditional noble metal-based electrocatalysts in sensitivity and affordability. The one-step electrochemical modification method is efficient and straightforward, enabling the uniform deposition of hierarchical flower-like cobalt nanostructures. These structures synergistically enhance the performance of the LIG, resulting in a broad detection range of 5 to 700 µM with a sensitivity of 6.75 µA µM−1 cm−2 and a low detection limit of 3.66 µM for UA. The morphology and elemental composition of the CoNCs/LIG electrodes are characterized using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). Beyond sensitivity, the sensor exhibited excellent selectivity, reliably resisting interference from competing biologically species such as ascorbic acid, dopamine, glycine, and glucose. Clinical utility is demonstrated in serum and artificial urine samples, achieving recovery rates ranging from (102.47%–104.46%). This work highlights the exceptional electrocatalytic efficiency of CoNCs/LIG-based flexible biosensors, offering a highly sensitive, selective, and cost-effective platform for UA detection, with promising applications in clinical diagnostics and health monitoring.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信